Double points and image of reflection maps (2024)

Table of Contents
1. Introduction 2. Notation and preliminaries Reflection groups and the orbit mapping Reflection mappings Unfoldings and W𝑊\displaystyle Witalic_W-unfoldings The degree of a reflection mapping Fitting ideals 3. The image of a reflection mapping 𝒴n→ℂn+1→superscript𝒴𝑛superscriptℂ𝑛1\displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1}caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT Computing the image via elimination of variables 4. Decomposition of the double point spaces K2⁢(f),D2⁢(f)subscript𝐾2𝑓superscript𝐷2𝑓\displaystyle K_{2}(f),D^{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) , italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D⁢(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ). Decomposition of the double point space K2⁢(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) Decomposition of the double point space D2⁢(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) Decomposition of the double point space D⁢(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) 5. A formula for D⁢(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) in the hypersurface case The double point curve D⁢(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) of a reflection mapping 𝒴2→ℂ3→superscript𝒴2superscriptℂ3\displaystyle\mathcal{Y}^{2}\to\mathbb{C}^{3}caligraphic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Appendix A Proofs of the unfolding lemmata 2.11 and 5.1 Proof of the Generically One-To-One Unfolding Lemma 2.11 Proof of the Unfolding With Good Double Points Lemma 5.1 References References

J. R. Borges-Zampiva, B. Oréfice-Okamoto, G. Peñafort Sanchis,J.N. TomazellaDepartamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905, São Carlos, SP, BRAZILjrbzampiva@estudante.ufscar.brDepartament de Matemàtiques,Universitat de València, Campus de Burjassot, 46100 BurjassotSPAIN.guillermo.penafort@uv.esDepartamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676,13560-905, São Carlos, SP, BRAZILbrunaorefice@ufscar.brDepartamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676,13560-905, São Carlos, SP, BRAZILjntomazella@ufscar.br

Abstract.

A reflection mapping is a singular holomorphic mapping obtained by restricting the quotient mapping of a complex reflection group. We study the analytic structure of double point spaces of reflection mappings. In the case where the image is a hypersurface, we obtain explicit equations for the double point space and for the image as well. In the case of surfaces in 3superscript3\displaystyle\mathbb{C}^{3}blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, this gives a very efficient method to compute the Milnor number and delta invariant of the double point curve.

Key words and phrases:

Reflection groups, singular mappings, multiple points

2000 Mathematics Subject Classification:

Primary 32S25; Secondary 58K40, 32S50

The first author has been partially supported by CAPES. The second author has been suported by Grant PGC2018-094889-B-100 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”. The third has been supported by FAPESP-Grant 2022/15458-1. The third and fourth author have been partially supported by FAPESP Grant 2019/07316-0.

1. Introduction

In the theory of singular mappings, there are few known examples which are degenerate and also have desirable properties. The problem, rather than an actual lack of mappings of this kind, seems to be the difficulty of the calculations.Reflection mappings were introduced in the prequel of this work [17], as a means to produce degenerate mappings which are easy to understand. This stablished the existence of the examples we were looking for in certain dimensions. In this paper we go one step further and show how to compute the double point spaces—and, in the hypersurface case, the image as well— for reflection mappings. In short, a reflection mapping is a holomorphic singular mapping 𝒴p𝒴superscript𝑝\displaystyle\mathcal{Y}\to\mathbb{C}^{p}caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT obtained by restricting the quotient map of a reflection group W𝑊\displaystyle Witalic_W to a submanifold 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y of the vector space 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V where the group acts (see Section 2 for details). The idea is that the group action, together with the way 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y sits in 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V, must encode the geometry of the mapping.

The reflection mapping class contains the first families of quasi-hom*ogeneous finitely determined map-germs (n,0)(p,0)superscript𝑛0superscript𝑝0\displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{p},0)( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , 0 ) having unbounded multiplicity, for arbitrary n𝑛\displaystyle nitalic_n and p=2n1𝑝2𝑛1\displaystyle p=2n-1italic_p = 2 italic_n - 1 or p=2n𝑝2𝑛\displaystyle p=2nitalic_p = 2 italic_n [17, Theorems 9.5 and 9.6] (see Example 2.5 for low dimensional examples). These mappings where later shown by Ruas and Silva to be counterexamples to a long standing conjecture of Ruas [21]. Brasselet, Thuy and Ruas used them to show the density of the finitely determined mappings among certain spaces of quasi-hom*ogeneous mappings [2]. Silva noticed that these reflection mappings show that the topological type of a generic transverse slice, in the case of 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite quasihom*ogeneous mappings, is not determined by their weights and degrees [22]. Rodrigues Hernandes and Ruas have shown that every finitely determined monomial mapping (n,0)(p,0)superscript𝑛0superscript𝑝0\displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{p},0)( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , 0 ), with p2n𝑝2𝑛\displaystyle p\geq 2nitalic_p ≥ 2 italic_n, is a reflection mapping [19]. In contrast, for p<2n1𝑝2𝑛1\displaystyle p<2n-1italic_p < 2 italic_n - 1, the only finitely determined reflection mappings are folding maps [17, Theorem 8.5]. Reflection mappings were also shown to satisfy an extended version of Lê’s conjecture, a rather misterious problem relating injectivity and corank [17, Proposition 4.3].

Apart from the theory of singular mappings, reflection mappings have proven to be relevant in differential geometry. The original idea is due to Bruce and Wilkinson [3, 4], who noticed that the singularities produced by folding a surface with respect to a plane (in our terminology these are /22\displaystyle\mathbb{Z}/2blackboard_Z / 2-reflection mappings) reveal interesting extrinsic information of the surface. This idea has since been extended to the other spaces [1, 7, 15] as well as to different reflection groups [18]. The reflection mappings used by Bruce and Wilkinson are known as folding mappings and have been widely studied (apart from the previous references, see [6]). They belong to a subclass called reflected graphs [17, Definition 13], which we describe in Example 2.4. This class includes other previously studied classes of mappings, such as double folds [8, 16] and k𝑘\displaystyle kitalic_k-folding mappings [18]. Double folds provided the first examples of finitely determined quasi-hom*ogeneous corank two map-germs. Inspecting the classification of all simple map germs (2,0)(3,0)superscript20superscript30\displaystyle(\mathbb{C}^{2},0)\to(\mathbb{C}^{3},0)( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 0 ) [12] reveals that they are either folding mappings or 33\displaystyle 33-folding mappings.

Now we can discuss the content of the present work. Singular mappings are understood via the study of their multiple point spaces, the most fundamental of which are the double point spaces. Moreover, given the coordinate functions of a map-germ (n,0)(n+1,0)superscript𝑛0superscript𝑛10\displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{n+1},0)( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , 0 ), one would like to know the equation of its image. As it turns out, both the image and the double points spaces become degenerate very fast as the complexity of the coordinate functions increases. We show how to study these objects for reflection mappings, in a much simpler way than in the case of arbitrary singular mappings. In the hypersurface case, the image of reflection mappings is described as well.

For reflection mappings, there are three decompositions of double point spaces indexed by the reflection group, namely

K2(f)=σW{1}K2σ(f),D2(f)=σW{1}D2σ(f),D(f)=σW{1}Dσ(f).formulae-sequencesubscript𝐾2𝑓subscript𝜎𝑊1superscriptsubscript𝐾2𝜎𝑓formulae-sequencesuperscript𝐷2𝑓subscript𝜎𝑊1superscriptsubscript𝐷2𝜎𝑓𝐷𝑓subscript𝜎𝑊1subscript𝐷𝜎𝑓\displaystyle K_{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}K_{2}^{\sigma}(f),%\qquad D^{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}D_{2}^{\sigma}(f),\qquad D(%f)=\bigcup_{\sigma\in W\setminus\{1\}}D_{\sigma}(f).italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) , italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) , italic_D ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) .

These decompositions appeared in [17, Sections 6 and 7] already, but just at the set theoretical level. In contrast, here the analytic structure of the branches K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) and Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is described explicitly. These analytic structures are a fundamental part of the theory of singular mappings, which requires K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ), D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) to be complex spaces, sometimes with a non-reduced structure indicating higher degeneracy.

For arbitrary mappings 𝒴n+1𝒴superscript𝑛1\displaystyle\mathcal{Y}\to\mathbb{C}^{n+1}caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT with dim𝒴=ndim𝒴𝑛\displaystyle\operatorname{dim}\mathcal{Y}=nroman_dim caligraphic_Y = italic_n, the double point space D(f)𝒴𝐷𝑓𝒴\displaystyle D(f)\subset\mathcal{Y}italic_D ( italic_f ) ⊂ caligraphic_Y and the image Imfn+1Im𝑓superscript𝑛1\displaystyle\operatorname{Im}f\subset\mathbb{C}^{n+1}roman_Im italic_f ⊂ blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT are hypersurfaces (or more precisely, complex spaces defined locally by principal ideals, as they are not always reduced), but computing their equations is usually very hard. One of the main achievements of this work are the explicit formulas

Imf=V(σW(σL)s),D(f)=V(σW{1}λσ)formulae-sequenceIm𝑓𝑉subscriptproduct𝜎𝑊𝜎𝐿𝑠𝐷𝑓𝑉subscriptproduct𝜎𝑊1subscript𝜆𝜎\displaystyle\operatorname{Im}f=V\Big{(}\prod_{\sigma\in W}(\sigma L)\circ s%\Big{)},\qquad D(f)=V\Big{(}\prod_{\sigma\in W\setminus\{1\}}\lambda_{\sigma}%\Big{)}roman_Im italic_f = italic_V ( ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT ( italic_σ italic_L ) ∘ italic_s ) , italic_D ( italic_f ) = italic_V ( ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT )

for reflection mappings. As a bonus, the formula for D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) gives a much faster way to compute the Milnor number and delta invariant of D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) for germs of reflection mappings 𝒴23superscript𝒴2superscript3\displaystyle\mathcal{Y}^{2}\to\mathbb{C}^{3}caligraphic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

2. Notation and preliminaries

In this section we summarize the prerequisites and set the notation for reflection groups and reflection mappings. For a more detailed account and proper citations, we refer to [17].To avoid repetition, we fix the meaning of the symbols and notations summarized in this section, which will not be reintroduced.

Reflection groups and the orbit mapping

Throughout the text, W𝑊\displaystyle Witalic_W stands for a (complex) reflection group acting on a \displaystyle\mathbb{C}blackboard_C-vector space 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V. We write p=dim𝒱𝑝dim𝒱\displaystyle p=\operatorname{dim}\mathcal{V}italic_p = roman_dim caligraphic_V.

The orbit of a subset S𝒱𝑆𝒱\displaystyle S\subseteq\mathcal{V}italic_S ⊆ caligraphic_V (or better, the union of the orbits of the points in S𝑆\displaystyle Sitalic_S) is denoted by WS𝒱𝑊𝑆𝒱\displaystyle WS\subseteq\mathcal{V}italic_W italic_S ⊆ caligraphic_V.We adopt the convention that the action of σW𝜎𝑊\displaystyle\sigma\in Witalic_σ ∈ italic_W on a function H𝐻\displaystyle Hitalic_H in 𝒪𝒱subscript𝒪𝒱\displaystyle\mathcal{O}_{\mathcal{V}}caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT is(σH)(u)=H(σ1u).𝜎𝐻𝑢𝐻superscript𝜎1𝑢\displaystyle(\sigma H)(u)=H(\sigma^{-1}u).( italic_σ italic_H ) ( italic_u ) = italic_H ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_u ) .Hence, a zeroset S=V(J)𝑆𝑉𝐽\displaystyle S=V(J)italic_S = italic_V ( italic_J ) is transformed by σ𝜎\displaystyle\sigmaitalic_σ into the set σS={σuuS}=V(σJ)𝜎𝑆conditional-set𝜎𝑢𝑢𝑆𝑉𝜎𝐽\displaystyle\sigma S=\{\sigma u\mid u\in S\}=V(\sigma J)italic_σ italic_S = { italic_σ italic_u ∣ italic_u ∈ italic_S } = italic_V ( italic_σ italic_J ).The stabilizer of S𝑆\displaystyle Sitalic_S is

WS={σWσS=S}.superscript𝑊𝑆conditional-set𝜎𝑊𝜎𝑆𝑆\displaystyle W^{S}=\{\sigma\in W\mid\sigma S=S\}.italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT = { italic_σ ∈ italic_W ∣ italic_σ italic_S = italic_S } .

and the pointwise stabilizer of S𝑆\displaystyle Sitalic_S is

WS={σWσu=u,for alluS}.subscript𝑊𝑆conditional-set𝜎𝑊formulae-sequence𝜎𝑢𝑢for all𝑢𝑆\displaystyle W_{S}=\{\sigma\in W\mid\sigma u=u,\text{ for all }u\in S\}.italic_W start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = { italic_σ ∈ italic_W ∣ italic_σ italic_u = italic_u , for all italic_u ∈ italic_S } .

WSsuperscript𝑊𝑆\displaystyle W^{S}italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT is the maximal subgroup of W𝑊\displaystyle Witalic_W acting on S𝑆\displaystyle Sitalic_S. The pointwise stabilizer WSsubscript𝑊𝑆\displaystyle W_{S}italic_W start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT is a normal subgroup of WSsuperscript𝑊𝑆\displaystyle W^{S}italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT and the quotient WS/WSsuperscript𝑊𝑆subscript𝑊𝑆\displaystyle W^{S}/W_{S}italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT acts faithfully on S𝑆\displaystyle Sitalic_S.

The union of the reflecting hyperplanes of all reflections in W𝑊\displaystyle Witalic_W is called the hyperplane arrangement and is written as𝒜𝒱𝒜𝒱\displaystyle\mathscr{A}\subset\mathcal{V}script_A ⊂ caligraphic_V.The reflecting hyperplanes induce a partition of 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V into subsets, called facets, consisting of those points contained in exactly the same hyperplanes. The set of facets is denoted by 𝒞𝒞\displaystyle\mathscr{C}script_C and called the complex of W𝑊\displaystyle Witalic_W.Clearly, facets C𝒞𝐶𝒞\displaystyle C\in\mathscr{C}italic_C ∈ script_C are open subsets of linear subspaces, hence have the same tangent everywhere, which may be identified with the closure C¯¯𝐶\displaystyle\overline{C}over¯ start_ARG italic_C end_ARG. Similarly, we often write Csuperscript𝐶bottom\displaystyle C^{\bot}italic_C start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT instead of TyCsubscript𝑇𝑦superscript𝐶bottom\displaystyle T_{y}C^{\bot}italic_T start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT, for any yC𝑦𝐶\displaystyle y\in Citalic_y ∈ italic_C.

The celebrated Shephard-Todd-Chevalley Theorem characterizes reflection groups as the only subgroups of the group of unitary transformations of 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V for which the quotient mapping 𝒱𝒱/W𝒱𝒱𝑊\displaystyle\mathcal{V}\to\mathcal{V}/Wcaligraphic_V → caligraphic_V / italic_W can be realized as a polynomial mapping

ω:𝒱p:𝜔𝒱superscript𝑝\displaystyle\omega\colon\mathcal{V}\to\mathbb{C}^{p}italic_ω : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT

whose coordinate functions ω1,,ωpsubscript𝜔1subscript𝜔𝑝\displaystyle\omega_{1},\dots,\omega_{p}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT are hom*ogeneous polynomials (they are a set of generators of the ring of W𝑊\displaystyle Witalic_W-invariant polynomials). More geometrically, the map ω𝜔\displaystyle\omegaitalic_ω identifies an orbit to a point, that is, for any u𝒱𝑢𝒱\displaystyle u\in\mathcal{V}italic_u ∈ caligraphic_V, we have that ω1(ω(u))=Wusuperscript𝜔1𝜔𝑢𝑊𝑢\displaystyle\omega^{-1}(\omega(u))=Wuitalic_ω start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_ω ( italic_u ) ) = italic_W italic_u.

Reflection groups act faithfully, hence ω𝜔\displaystyle\omegaitalic_ω is generically |W|𝑊\displaystyle|W|| italic_W |-to-one, and it is well known that the ramification locus is precisely the hyperplane arrangement. More precissely, given a point u𝒱𝑢𝒱\displaystyle u\in\mathcal{V}italic_u ∈ caligraphic_V, contained in a facet C𝒞𝐶𝒞\displaystyle C\in\mathscr{C}italic_C ∈ script_C, we have that kerdωu=Ckerneldsubscript𝜔𝑢superscript𝐶bottom\displaystyle\ker\operatorname{d}\!\omega_{u}=C^{\bot}roman_ker roman_d italic_ω start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = italic_C start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT.

By the universal property of quotient mappings, the mapping ω𝜔\displaystyle\omegaitalic_ω is well defined up to \displaystyle\mathcal{L}caligraphic_L-equivalence (that is, up to changes of coordinates in the target). As it will become clear, replacing ω𝜔\displaystyle\omegaitalic_ω by an \displaystyle\mathcal{L}caligraphic_L-equivalent map does not change the 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-class of the associated reflection mappings. Since we study reflection mappings up to 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-equivalence, we may pretend ω𝜔\displaystyle\omegaitalic_ω to be unique, and abusively call it the orbit map of W𝑊\displaystyle Witalic_W.

Example 2.1 (Products of cyclic groups).

The product /d1××/dpsubscript𝑑1subscript𝑑𝑝\displaystyle\mathbb{Z}/{d_{1}}\times\dots\times\mathbb{Z}/{d_{p}}blackboard_Z / italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × ⋯ × blackboard_Z / italic_d start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is a reflection group acting on psuperscript𝑝\displaystyle\mathbb{C}^{p}blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT by

(a1,,ap)(u1,,up)=(ξ1a1u1,,ξpapup), withξj=e2πidj.subscript𝑎1subscript𝑎𝑝subscript𝑢1subscript𝑢𝑝superscriptsubscript𝜉1subscript𝑎1subscript𝑢1superscriptsubscript𝜉𝑝subscript𝑎𝑝subscript𝑢𝑝, withsubscript𝜉𝑗superscript𝑒2𝜋𝑖subscript𝑑𝑗\displaystyle(a_{1},\dots,a_{p})\cdot(u_{1},\dots,u_{p})=(\xi_{1}^{a_{1}}u_{1}%,\dots,\xi_{p}^{a_{p}}u_{p})\text{, with }\xi_{j}=e^{\frac{2\pi i}{d_{j}}}.( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ⋅ ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ξ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) , with italic_ξ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_e start_POSTSUPERSCRIPT divide start_ARG 2 italic_π italic_i end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT .

An element (a1,,ap)subscript𝑎1subscript𝑎𝑝\displaystyle(a_{1},\dots,a_{p})( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) is a reflection if and only if exactly one aisubscript𝑎𝑖\displaystyle a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is nonzero. The orbit map is defined by ω(u1,,up)=(u1d1,,updp).𝜔subscript𝑢1subscript𝑢𝑝superscriptsubscript𝑢1subscript𝑑1superscriptsubscript𝑢𝑝subscript𝑑𝑝\displaystyle\omega(u_{1},\dots,u_{p})=(u_{1}^{d_{1}},\dots,u_{p}^{d_{p}}).italic_ω ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) .

Example 2.2 (Dihedral groups, D2nsubscript𝐷2𝑛\displaystyle D_{2n}italic_D start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT).

These are the groups of symmetries of regular polygon of n𝑛\displaystyle nitalic_n sides. We will use the group D8subscript𝐷8\displaystyle D_{8}italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, consisting of the identity, four reflections

σ1=(1001),σ2=(0110),σ3=(1001),σ4=(0110)formulae-sequencesubscript𝜎11001formulae-sequencesubscript𝜎20110formulae-sequencesubscript𝜎31001subscript𝜎40110\displaystyle\sigma_{1}=\left(\begin{array}[]{cc}1&0\\0&-1\end{array}\right),\quad\sigma_{2}=\left(\begin{array}[]{cc}0&1\\1&0\end{array}\right),\quad\sigma_{3}=\left(\begin{array}[]{cc}-1&0\\0&1\end{array}\right),\quad\sigma_{4}=\left(\begin{array}[]{cc}0&-1\\-1&0\end{array}\right)italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW end_ARRAY ) , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY )

and three rotations

ρ1=(0110),ρ2=(1001),ρ3=(0110).formulae-sequencesubscript𝜌10110formulae-sequencesubscript𝜌21001subscript𝜌30110\displaystyle\rho_{1}=\left(\begin{array}[]{cc}0&-1\\1&0\end{array}\right),\quad\rho_{2}=\left(\begin{array}[]{cc}-1&0\\0&-1\end{array}\right),\quad\rho_{3}=\left(\begin{array}[]{cc}0&1\\-1&0\end{array}\right).italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW end_ARRAY ) , italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) .

The orbit map of D8subscript𝐷8\displaystyle D_{8}italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is the mapping ω:22:𝜔superscript2superscript2\displaystyle\omega\colon\mathbb{C}^{2}\to\mathbb{C}^{2}italic_ω : blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, given by

(u,v)(u2+v2,u2v2).maps-to𝑢𝑣superscript𝑢2superscript𝑣2superscript𝑢2superscript𝑣2\displaystyle(u,v)\mapsto(u^{2}+v^{2},u^{2}v^{2}).( italic_u , italic_v ) ↦ ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .
Example 2.3 (The group 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT of symmetries of the tetrahedron).

Consider a regular tetrahedron centered at the origin of 3superscript3\displaystyle\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, for example the one with vertices

V1=(1,0,12)V2=(1,0,12),V3=(0,1,12),V4=(0,1,12).formulae-sequencesubscript𝑉11012formulae-sequencesubscript𝑉21012formulae-sequencesubscript𝑉30112subscript𝑉40112\displaystyle V_{1}=\left(1,0,\frac{-1}{\sqrt{2}}\right)\quad V_{2}=\left(-1,0%,\frac{-1}{\sqrt{2}}\right),\quad V_{3}=\left(0,1,\frac{1}{\sqrt{2}}\right),%\quad V_{4}=\left(0,-1,\frac{1}{\sqrt{2}}\right).italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( 1 , 0 , divide start_ARG - 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) italic_V start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( - 1 , 0 , divide start_ARG - 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) , italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( 0 , 1 , divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) , italic_V start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = ( 0 , - 1 , divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) .

The group of unitary automorphisms of the tetrahedron is a reflection group, isomorphic as an abstract group to the permutation group 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT of its four vertices. This group is generated by the permutations (ii+1)𝑖𝑖1\displaystyle(i\;i+1)( italic_i italic_i + 1 ), which in matrix form are

(1 2)=(100010001),(2 3)=12(112112220),(3 4)=(100010001).formulae-sequence12100010001formulae-sequence231211211222034100010001\displaystyle(1\;2)=\left(\begin{array}[]{ccc}-1&0&0\\0&1&0\\0&0&1\end{array}\right),\;(2\;3)=\frac{1}{2}\left(\begin{array}[]{ccc}1&-1&-%\sqrt{2}\\-1&1&-\sqrt{2}\\-\sqrt{2}&-\sqrt{2}&0\end{array}\right),\;(3\;4)=\left(\begin{array}[]{ccc}1&0%&0\\0&-1&0\\0&0&1\end{array}\right).( 1 2 ) = ( start_ARRAY start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , ( 2 3 ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL - 1 end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 1 end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL - square-root start_ARG 2 end_ARG end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , ( 3 4 ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) .

The group 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT contains 66\displaystyle 66 reflections, which are precisely the permutations (ij)𝑖𝑗\displaystyle(i\;j)( italic_i italic_j ). The orbit map is

ω(u,v,w)=(u2+v2+w2,(u+v)(uv)w,(2u2w2)(2v2w2)).𝜔𝑢𝑣𝑤superscript𝑢2superscript𝑣2superscript𝑤2𝑢𝑣𝑢𝑣𝑤2superscript𝑢2superscript𝑤22superscript𝑣2superscript𝑤2\displaystyle\omega(u,v,w)=\big{(}u^{2}+v^{2}+w^{2},(u+v)(u-v)w,(2u^{2}-w^{2})%(2v^{2}-w^{2})\big{)}.italic_ω ( italic_u , italic_v , italic_w ) = ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_w start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , ( italic_u + italic_v ) ( italic_u - italic_v ) italic_w , ( 2 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_w start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 2 italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_w start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) .

Reflection mappings

Take an embedding h:𝒳𝒱:𝒳𝒱\displaystyle h\colon\mathcal{X}\hookrightarrow\mathcal{V}italic_h : caligraphic_X ↪ caligraphic_V of an n𝑛\displaystyle nitalic_n-dimensional complex manifold 𝒳𝒳\displaystyle\mathcal{X}caligraphic_X into 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V. The image of h\displaystyle hitalic_h is an n𝑛\displaystyle nitalic_n-dimensional complex submanifold

𝒴=h(𝒳)𝒱.𝒴𝒳𝒱\displaystyle\mathcal{Y}=h(\mathcal{X})\subseteq\mathcal{V}.caligraphic_Y = italic_h ( caligraphic_X ) ⊆ caligraphic_V .

A reflection mapping is a map obtained as the composition of the orbit map ω𝜔\displaystyle\omegaitalic_ω and the embedding h\displaystyle hitalic_h, that is,

f=ωh:𝒳p.:𝑓𝜔𝒳superscript𝑝\displaystyle f=\omega\circ h\colon\mathcal{X}\to\mathbb{C}^{p}.italic_f = italic_ω ∘ italic_h : caligraphic_X → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .

It is often convenient to replace h\displaystyle hitalic_h by the inclusion 𝒴𝒱𝒴𝒱\displaystyle\mathcal{Y}\hookrightarrow\mathcal{V}caligraphic_Y ↪ caligraphic_V, obtaining a reflection mapping which, abusively, is also denoted

f=ω|𝒴:𝒴p.:𝑓evaluated-at𝜔𝒴𝒴superscript𝑝\displaystyle f=\omega|_{\mathcal{Y}}\colon\mathcal{Y}\to\mathbb{C}^{p}.italic_f = italic_ω | start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT : caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .

The choice between these two equivalent settings will be clear from the context.To finish fixing our notation, locally at any point, 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is defined in 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V by a collection of regular equations, which we write as

L=(L1,,Lpn)=0.𝐿subscript𝐿1subscript𝐿𝑝𝑛0\displaystyle L=(L_{1},\dots,L_{p-n})=0.italic_L = ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT ) = 0 .

(technically, it would be better to express our results in terms of the ideal sheaf I(𝒴)𝐼𝒴\displaystyle I(\mathcal{Y})italic_I ( caligraphic_Y ) of holomorphic functions vanishing on 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y. For the sake of clarity, we have chosen to ignore this issue, which can be fixed by a standard glueing process).

Example 2.4 (Reflected graphs).

Take a reflection group W𝑊\displaystyle Witalic_W acting on 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V, and a mapping H:𝒱p:𝐻𝒱superscript𝑝\displaystyle H\colon\mathcal{V}\to\mathbb{C}^{p}italic_H : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT. We may regard W𝑊\displaystyle Witalic_W as a reflection group acting on 𝒱×p𝒱superscript𝑝\displaystyle\mathcal{V}\times\mathbb{C}^{p}caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT, by extending the action trivially on psuperscript𝑝\displaystyle\mathbb{C}^{p}blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT, and take 𝒴𝒱×p𝒴𝒱superscript𝑝\displaystyle\mathcal{Y}\subseteq\mathcal{V}\times\mathbb{C}^{p}caligraphic_Y ⊆ caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT to be the graph of H𝐻\displaystyle Hitalic_H (or equivalently, take the graph embedding h:𝒱𝒱×p:𝒱𝒱superscript𝑝\displaystyle h\colon\mathcal{V}\to\mathcal{V}\times\mathbb{C}^{p}italic_h : caligraphic_V → caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT) . The resulting reflection mapping 𝒱n×p𝒱superscript𝑛superscript𝑝\displaystyle\mathcal{V}\to\mathbb{C}^{n}\times\mathbb{C}^{p}caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is called a reflected graph and has the form

x(ω(x),H(x)).maps-to𝑥𝜔𝑥𝐻𝑥\displaystyle x\mapsto\big{(}\omega(x),H(x)\big{)}.italic_x ↦ ( italic_ω ( italic_x ) , italic_H ( italic_x ) ) .

A typical and much studied example of reflected graphs are folding maps

(x,y)(x,y2,H(x,y)),xn1,y.formulae-sequencemaps-to𝑥𝑦𝑥superscript𝑦2𝐻𝑥𝑦formulae-sequence𝑥superscript𝑛1𝑦\displaystyle(x,y)\mapsto(x,y^{2},H(x,y)),\quad x\in\mathbb{C}^{n-1},y\in%\mathbb{C}.( italic_x , italic_y ) ↦ ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_H ( italic_x , italic_y ) ) , italic_x ∈ blackboard_C start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT , italic_y ∈ blackboard_C .

Observe that, after a target change of coordinates, H(x,y)𝐻𝑥𝑦\displaystyle H(x,y)italic_H ( italic_x , italic_y ) can be taken to be of the form yP(x,y2)𝑦𝑃𝑥superscript𝑦2\displaystyle yP(x,y^{2})italic_y italic_P ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). Similarly, double folds are /2×/222\displaystyle\mathbb{Z}/2\times\mathbb{Z}/2blackboard_Z / 2 × blackboard_Z / 2-reflected graphs of the form (x,y)(x2,y2,xP1(x2,y2)+yP2(x2,y2)+xyP3(x2,y2))maps-to𝑥𝑦superscript𝑥2superscript𝑦2𝑥subscript𝑃1superscript𝑥2superscript𝑦2𝑦subscript𝑃2superscript𝑥2superscript𝑦2𝑥𝑦subscript𝑃3superscript𝑥2superscript𝑦2\displaystyle(x,y)\mapsto(x^{2},y^{2},xP_{1}(x^{2},y^{2})+yP_{2}(x^{2},y^{2})+%xyP_{3}(x^{2},y^{2}))( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_x italic_y italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) and k𝑘\displaystyle kitalic_k-folding mappings are /k𝑘\displaystyle\mathbb{Z}/kblackboard_Z / italic_k-reflected graphs (x,y)(x,yk,H(x,y))maps-to𝑥𝑦𝑥superscript𝑦𝑘𝐻𝑥𝑦\displaystyle(x,y)\mapsto(x,y^{k},H(x,y))( italic_x , italic_y ) ↦ ( italic_x , italic_y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_H ( italic_x , italic_y ) ) (See the Introduction for references for folding maps, double folds and k𝑘\displaystyle kitalic_k-folding mappings).

An interesting example is the /k×/k𝑘𝑘\displaystyle\mathbb{Z}/k\times\mathbb{Z}/kblackboard_Z / italic_k × blackboard_Z / italic_k-reflection graph (x,y)(xk,yk,xy)maps-to𝑥𝑦superscript𝑥𝑘superscript𝑦𝑘𝑥𝑦\displaystyle(x,y)\mapsto(x^{k},y^{k},xy)( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_x italic_y ), defined by the graph of the function H(x,y)=xy𝐻𝑥𝑦𝑥𝑦\displaystyle H(x,y)=xyitalic_H ( italic_x , italic_y ) = italic_x italic_y. It parametrizes the Ak1subscript𝐴𝑘1\displaystyle A_{k-1}italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT-singularity {Zk=XY}superscript𝑍𝑘𝑋𝑌\displaystyle\{Z^{k}=XY\}{ italic_Z start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = italic_X italic_Y }, but it does so in a generically k𝑘\displaystyle kitalic_k-to-one way, as explained in Example 2.9 (observe that Ak1subscript𝐴𝑘1\displaystyle A_{k-1}italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT being normal prevents it from being parametrized in a generically one-to-one way).

Also, taking the group D8subscript𝐷8\displaystyle D_{8}italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT (Example 2.2) and the functions H1(x,y)=x+2ysubscript𝐻1𝑥𝑦𝑥2𝑦\displaystyle H_{1}(x,y)=x+2yitalic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_x + 2 italic_y and H2(x,y)=x2+xyy2+x3+x2y2xy2y3subscript𝐻2𝑥𝑦superscript𝑥2𝑥𝑦superscript𝑦2superscript𝑥3superscript𝑥2𝑦2𝑥superscript𝑦2superscript𝑦3\displaystyle H_{2}(x,y)=x^{2}+xy-y^{2}+x^{3}+x^{2}y-2xy^{2}-y^{3}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, we obtain the reflection graphs

f1D8:(x,y)(x2+y2,x2y2,x+2y),:subscriptsuperscript𝑓subscript𝐷81maps-to𝑥𝑦superscript𝑥2superscript𝑦2superscript𝑥2superscript𝑦2𝑥2𝑦\displaystyle f^{D_{8}}_{1}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},x+2y),italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x + 2 italic_y ) ,
f2D8:(x,y)(x2+y2,x2y2,2x2+3xyy2+2x3+8x2y2xy22y3).:subscriptsuperscript𝑓subscript𝐷82maps-to𝑥𝑦superscript𝑥2superscript𝑦2superscript𝑥2superscript𝑦22superscript𝑥23𝑥𝑦superscript𝑦22superscript𝑥38superscript𝑥2𝑦2𝑥superscript𝑦22superscript𝑦3\displaystyle f^{D_{8}}_{2}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x^{2}+3%xy-y^{2}+2x^{3}+8x^{2}y-2xy^{2}-2y^{3}).italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 8 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) .

The last two examples are depicted in Figure 1.

Double points and image of reflection maps (1)
Example 2.5 (Reflection mappings with unbounded multiplicity).

The map-germs

f(d1,d2,d3):(x,y)(xd1,yd2,(x+y)d3),:superscript𝑓subscript𝑑1subscript𝑑2subscript𝑑3maps-to𝑥𝑦superscript𝑥subscript𝑑1superscript𝑦subscript𝑑2superscript𝑥𝑦subscript𝑑3\displaystyle f^{(d_{1},d_{2},d_{3})}\colon(x,y)\mapsto(x^{d_{1}},y^{d_{2}},(x%+y)^{d_{3}}),italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x + italic_y ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ,
f(d1,,d5):(x,y,z)(xd1,yd2,zd3,(x+y+z)d4,(xy+2z)d5),:superscript𝑓subscript𝑑1subscript𝑑5maps-to𝑥𝑦𝑧superscript𝑥subscript𝑑1superscript𝑦subscript𝑑2superscript𝑧subscript𝑑3superscript𝑥𝑦𝑧subscript𝑑4superscript𝑥𝑦2𝑧subscript𝑑5\displaystyle f^{(d_{1},\dots,d_{5})}\colon(x,y,z)\mapsto(x^{d_{1}},y^{d_{2}},%z^{d_{3}},(x+y+z)^{d_{4}},(x-y+2z)^{d_{5}}),italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT : ( italic_x , italic_y , italic_z ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x + italic_y + italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x - italic_y + 2 italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ,

with disubscript𝑑𝑖\displaystyle d_{i}italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT pairwise coprime positive integers, belong to a family of map-germs (n,0)(2n1,0)superscript𝑛0superscript2𝑛10\displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{2n-1},0)( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT , 0 ), introduced in [17, Theorems 9.5 and 9.6]), which, to this day, are the only known family of 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite map-germs whose coordinate functions have unbounded order. These are the germs studied by Brasselet, Ruas, Silva and Thuy mentioned in the Introduction.

Unfoldings and W𝑊\displaystyle Witalic_W-unfoldings

In the theory of singularities of mappings, the notion of deformation of a space-germ is replaced by that of unfolding of a map-germ. An unfolding of a map-germ f:(𝒴,S)(𝒵,z):𝑓𝒴𝑆𝒵𝑧\displaystyle f\colon(\mathcal{Y},S)\to(\mathcal{Z},z)italic_f : ( caligraphic_Y , italic_S ) → ( caligraphic_Z , italic_z ) is a map-germ

F:(𝒴,S)×(r,0)(𝒵,z)×(r,0):𝐹𝒴𝑆superscript𝑟0𝒵𝑧superscript𝑟0\displaystyle F\colon(\mathcal{Y},S)\times(\mathbb{C}^{r},0)\to(\mathcal{Z},z)%\times(\mathbb{C}^{r},0)italic_F : ( caligraphic_Y , italic_S ) × ( blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , 0 ) → ( caligraphic_Z , italic_z ) × ( blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , 0 )

of the form F(x,t)=(ft(x),t)𝐹𝑥𝑡subscript𝑓𝑡𝑥𝑡\displaystyle F(x,t)=(f_{t}(x),t)italic_F ( italic_x , italic_t ) = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_x ) , italic_t ), satisfying f0=fsubscript𝑓0𝑓\displaystyle f_{0}=fitalic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_f. Fixed a small representative of F𝐹\displaystyle Fitalic_F and a value ϵitalic-ϵ\displaystyle\epsilonitalic_ϵ of the parameter t𝑡\displaystyle titalic_t, the map fϵsubscript𝑓italic-ϵ\displaystyle f_{\epsilon}italic_f start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT is called a perturbation of f𝑓\displaystyle fitalic_f.

A reflection mapping may be perturbed into a non reflection mapping, for example, by perturbing ω𝜔\displaystyle\omegaitalic_ω in a way unrelated to the action of the group W𝑊\displaystyle Witalic_W. At the same time, perturbing 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y while keeping ω𝜔\displaystyle\omegaitalic_ω intact gives a family of reflection mappings containing the original reflection mapping defined by 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y. If we want to study unfoldings of reflection mappings without leaving the reflection mapping seting, these are the deformations we want to consider. In the following lines we formalize this construction.

Let f:𝒴p:𝑓𝒴superscript𝑝\displaystyle f\colon\mathcal{Y}\to\mathbb{C}^{p}italic_f : caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT be a reflection mapping, and consider a complex submanifold 𝒴~𝒱×Δ~𝒴𝒱Δ\displaystyle\widetilde{\mathcal{Y}}\subseteq\mathcal{V}\times\Deltaover~ start_ARG caligraphic_Y end_ARG ⊆ caligraphic_V × roman_Δ, such that 𝒴~Δ~𝒴Δ\displaystyle\widetilde{\mathcal{Y}}\to\Deltaover~ start_ARG caligraphic_Y end_ARG → roman_Δ defines a trivial deformation of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y over an open subset ΔrΔsuperscript𝑟\displaystyle\Delta\subseteq\mathbb{C}^{r}roman_Δ ⊆ blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT containing the origin. We may extend the action of W𝑊\displaystyle Witalic_W to 𝒱×r𝒱superscript𝑟\displaystyle\mathcal{V}\times\mathbb{C}^{r}caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT, trivially on the rsuperscript𝑟\displaystyle\mathbb{C}^{r}blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT coordinates, so that the corresponding orbit mapping is ω~=ω×idr~𝜔𝜔subscriptidsuperscript𝑟\displaystyle\widetilde{\omega}=\omega\times\operatorname{id}_{\mathbb{C}^{r}}over~ start_ARG italic_ω end_ARG = italic_ω × roman_id start_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT.

Definition 2.6.

In the above setting, the reflection mapping

F=ω~|𝒴~:𝒴~p×Δ\displaystyle F=\widetilde{\omega}_{|_{\widetilde{\mathcal{Y}}}}\colon%\widetilde{\mathcal{Y}}\to\mathbb{C}^{p}\times\Deltaitalic_F = over~ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT | start_POSTSUBSCRIPT over~ start_ARG caligraphic_Y end_ARG end_POSTSUBSCRIPT end_POSTSUBSCRIPT : over~ start_ARG caligraphic_Y end_ARG → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT × roman_Δ

is called a W𝑊\displaystyle Witalic_W-unfolding of f𝑓\displaystyle fitalic_f. If f:(𝒴,S)(𝒵,z):𝑓𝒴𝑆𝒵𝑧\displaystyle f\colon(\mathcal{Y},S)\to(\mathcal{Z},z)italic_f : ( caligraphic_Y , italic_S ) → ( caligraphic_Z , italic_z ) is a germ of reflection mapping, a W𝑊\displaystyle Witalic_W-unfolding of f𝑓\displaystyle fitalic_f is the germ at S×{0}𝑆0\displaystyle S\times\{0\}italic_S × { 0 } of a W𝑊\displaystyle Witalic_W-unfolding of a representative.

Observe that the triviality condition on the deformation 𝒴~r~𝒴superscript𝑟\displaystyle\widetilde{\mathcal{Y}}\to\mathbb{C}^{r}over~ start_ARG caligraphic_Y end_ARG → blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ensures that (𝒴~,S×{0})~𝒴𝑆0\displaystyle(\widetilde{\mathcal{Y}},S\times\{0\})( over~ start_ARG caligraphic_Y end_ARG , italic_S × { 0 } ) and (𝒴,S)×(Δ,0)𝒴𝑆Δ0\displaystyle(\mathcal{Y},S)\times(\Delta,0)( caligraphic_Y , italic_S ) × ( roman_Δ , 0 ) are isomorphic. In particular, every W𝑊\displaystyle Witalic_W-unfolding of a germ f𝑓\displaystyle fitalic_f is, up to 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-equivalence, an unfolding of f𝑓\displaystyle fitalic_f.

Example 2.7 (A family of tetrahedral reflection mappings).

Let 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT be the group of symmetries of a tetrahedron, as in Example 2.3. Considerthe family of reflection mappings

ft𝔖4=ω|𝒴t:𝒴t3with𝒴t={u=t(2v+w)}.:superscriptsubscript𝑓𝑡subscript𝔖4evaluated-at𝜔subscript𝒴𝑡formulae-sequencesubscript𝒴𝑡superscript3withsubscript𝒴𝑡𝑢𝑡2𝑣𝑤\displaystyle f_{t}^{\mathfrak{S}_{4}}=\omega|_{\mathcal{Y}_{t}}\colon\mathcal%{Y}_{t}\to\mathbb{C}^{3}\quad\text{with}\quad\mathcal{Y}_{t}=\{u=t(2v+w)\}.italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_ω | start_POSTSUBSCRIPT caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT : caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT with caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = { italic_u = italic_t ( 2 italic_v + italic_w ) } .

Equivalently, we may parametrize 𝒴tsubscript𝒴𝑡\displaystyle\mathcal{Y}_{t}caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT by (x,y)(t(2x+y),x,y)maps-to𝑥𝑦𝑡2𝑥𝑦𝑥𝑦\displaystyle(x,y)\mapsto(t(2x+y),x,y)( italic_x , italic_y ) ↦ ( italic_t ( 2 italic_x + italic_y ) , italic_x , italic_y ) and think of ft𝔖4superscriptsubscript𝑓𝑡subscript𝔖4\displaystyle f_{t}^{\mathfrak{S}_{4}}italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT as mappings 23superscript2superscript3\displaystyle\mathbb{C}^{2}\to\mathbb{C}^{3}blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT of the form

(x,y)(t2(2x+y)2+x2+y2,(t2(2x+y)2x2)y,(2t2(2x+y)2y2)(2x2y2))maps-to𝑥𝑦superscript𝑡2superscript2𝑥𝑦2superscript𝑥2superscript𝑦2superscript𝑡2superscript2𝑥𝑦2superscript𝑥2𝑦2superscript𝑡2superscript2𝑥𝑦2superscript𝑦22superscript𝑥2superscript𝑦2\displaystyle\big{(}x,y\big{)}\mapsto\Big{(}t^{2}(2x+y)^{2}+x^{2}+y^{2},\big{(%}t^{2}(2x+y)^{2}-x^{2}\big{)}y,\big{(}2t^{2}(2x+y)^{2}-y^{2}\big{)}\big{(}2x^{%2}-y^{2}\big{)}\Big{)}( italic_x , italic_y ) ↦ ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_y , ( 2 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) )

As it turns out, 𝒴0={u=0}=Fix(1 2)subscript𝒴0𝑢0Fix12\displaystyle\mathcal{Y}_{0}=\{u=0\}=\operatorname{Fix}(1\;2)caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = { italic_u = 0 } = roman_Fix ( 1 2 ) is one of the reflecting hyperplanes of 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. Since 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT acts transitively on its reflecting hyperplanes, we have that W𝒴0=𝒜𝑊subscript𝒴0𝒜\displaystyle W\mathcal{Y}_{0}=\mathscr{A}italic_W caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = script_A, thus

Imf0𝔖4=ω(𝒴0)=ω(𝒜),Imsuperscriptsubscript𝑓0subscript𝔖4𝜔subscript𝒴0𝜔𝒜\displaystyle\operatorname{Im}f_{0}^{\mathfrak{S}_{4}}=\omega(\mathcal{Y}_{0})%=\omega(\mathscr{A}),roman_Im italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_ω ( caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ω ( script_A ) ,

which means that the image of f0𝔖4superscriptsubscript𝑓0subscript𝔖4\displaystyle f_{0}^{\mathfrak{S}_{4}}italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is precisely the discriminant of the orbit map ω𝜔\displaystyle\omegaitalic_ω.

The degree of a reflection mapping

Before turning our attention to the image and double points space, we show how the degree of a reflection map is encoded by the stabilizers of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y in a very simple way. This is essential to our study of the image in the hypersurface case, but it applies to all dimensions.

In this work, when we talk about degree of a mapping f:𝒴𝒵:𝑓𝒴𝒵\displaystyle f\colon\mathcal{Y}\to\mathcal{Z}italic_f : caligraphic_Y → caligraphic_Z, we mean the number of preimages of a generic point in f(𝒴)𝑓𝒴\displaystyle f(\mathcal{Y})italic_f ( caligraphic_Y ). For this to make sense, there must be an open dense subset of f(𝒴)𝑓𝒴\displaystyle f(\mathcal{Y})italic_f ( caligraphic_Y ) on which this number of preimages is contant. This happens if f(𝒴)𝑓𝒴\displaystyle f(\mathcal{Y})italic_f ( caligraphic_Y ) is irreducible and f:𝒴f(𝒴):𝑓𝒴𝑓𝒴\displaystyle f\colon\mathcal{Y}\to f(\mathcal{Y})italic_f : caligraphic_Y → italic_f ( caligraphic_Y ) is proper. The degree for finite map-germs is defined by taking a proper representative. For mappings where f(𝒴)𝑓𝒴\displaystyle f(\mathcal{Y})italic_f ( caligraphic_Y ) fails to be irreducible, a different degree is associated to f𝑓\displaystyle fitalic_f on each irreducible component of f(𝒴)𝑓𝒴\displaystyle f(\mathcal{Y})italic_f ( caligraphic_Y ).

Proposition 2.8.

Let f𝑓\displaystyle fitalic_f be a reflection mapping such that f:𝒴f(𝒴):𝑓𝒴𝑓𝒴\displaystyle f\colon\mathcal{Y}\to f(\mathcal{Y})italic_f : caligraphic_Y → italic_f ( caligraphic_Y ) is proper and f(𝒴)𝑓𝒴\displaystyle f(\mathcal{Y})italic_f ( caligraphic_Y ) is irreducible. The degree of f𝑓\displaystyle fitalic_f is |W𝒴:W𝒴|\displaystyle|W^{\mathcal{Y}}:W_{\mathcal{Y}}|| italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT |.

Proof.

The degree of f𝑓\displaystyle fitalic_f is the number of preimages of a generic point in ω(𝒴)𝜔𝒴\displaystyle\omega(\mathcal{Y})italic_ω ( caligraphic_Y ), that is, the number of points in Wu𝒴𝑊𝑢𝒴\displaystyle Wu\cap\mathcal{Y}italic_W italic_u ∩ caligraphic_Y, for u𝑢\displaystyle uitalic_u in a certain open dense subset 𝒰1𝒴subscript𝒰1𝒴\displaystyle\mathcal{U}_{1}\subseteq\mathcal{Y}caligraphic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊆ caligraphic_Y. Observe that, given σW𝜎𝑊\displaystyle\sigma\in Witalic_σ ∈ italic_W and u𝒴𝑢𝒴\displaystyle u\in\mathcal{Y}italic_u ∈ caligraphic_Y, the condition σu𝒴𝜎𝑢𝒴\displaystyle\sigma u\in\mathcal{Y}italic_σ italic_u ∈ caligraphic_Y may hold even if σ𝜎\displaystyle\sigmaitalic_σ does not fix the set 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y, that is, even if σ𝒲𝒴𝜎superscript𝒲𝒴\displaystyle\sigma\notin\mathcal{W}^{\mathcal{Y}}italic_σ ∉ caligraphic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT. But, by definition of 𝒲𝒴superscript𝒲𝒴\displaystyle\mathcal{W}^{\mathcal{Y}}caligraphic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT, this must happen only on a proper closed subset of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y. Hence, there is an open dense subset 𝒰2𝒴subscript𝒰2𝒴\displaystyle\mathcal{U}_{2}\subseteq\mathcal{Y}caligraphic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⊆ caligraphic_Y such that the orbit of u𝒰2𝑢subscript𝒰2\displaystyle u\in\mathcal{U}_{2}italic_u ∈ caligraphic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT by the action of W𝒴/W𝒴superscript𝑊𝒴subscript𝑊𝒴\displaystyle W^{\mathcal{Y}}/W_{\mathcal{Y}}italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT is Wu𝒴𝑊𝑢𝒴\displaystyle Wu\cap\mathcal{Y}italic_W italic_u ∩ caligraphic_Y. Since W𝒴/W𝒴superscript𝑊𝒴subscript𝑊𝒴\displaystyle W^{\mathcal{Y}}/W_{\mathcal{Y}}italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT acts faithfully on 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y, there is an open dense subset 𝒰3subscript𝒰3\displaystyle\mathcal{U}_{3}caligraphic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, such that the orbit of a point u𝒰3𝑢subscript𝒰3\displaystyle u\in\mathcal{U}_{3}italic_u ∈ caligraphic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT consists of |W𝒴:W𝒴|\displaystyle|W^{\mathcal{Y}}:W_{\mathcal{Y}}|| italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | points. Since 𝒰1𝒰2𝒰3subscript𝒰1subscript𝒰2subscript𝒰3\displaystyle\mathcal{U}_{1}\cap\mathcal{U}_{2}\cap\mathcal{U}_{3}\neq\emptysetcaligraphic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ caligraphic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ caligraphic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅, the claim follows.∎

Example 2.9.

Consider the mapping f(x,y)=(xk,yk,xy)𝑓𝑥𝑦superscript𝑥𝑘superscript𝑦𝑘𝑥𝑦\displaystyle f(x,y)=(x^{k},y^{k},xy)italic_f ( italic_x , italic_y ) = ( italic_x start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_x italic_y ) of Example 2.4. One sees that the subgroup of /k×/k𝑘𝑘\displaystyle\mathbb{Z}/k\times\mathbb{Z}/kblackboard_Z / italic_k × blackboard_Z / italic_k preserving 𝒴={u3=u1u2}𝒴subscript𝑢3subscript𝑢1subscript𝑢2\displaystyle\mathcal{Y}=\{u_{3}=u_{1}u_{2}\}caligraphic_Y = { italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } is

(/k×/k)𝒴=(1,1)/k,superscript𝑘𝑘𝒴delimited-⟨⟩11𝑘\displaystyle(\mathbb{Z}/k\times\mathbb{Z}/k)^{\mathcal{Y}}=\langle(1,-1)%\rangle\cong\mathbb{Z}/k,( blackboard_Z / italic_k × blackboard_Z / italic_k ) start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT = ⟨ ( 1 , - 1 ) ⟩ ≅ blackboard_Z / italic_k ,

while no non trivial element of /k×/k𝑘𝑘\displaystyle\mathbb{Z}/k\times\mathbb{Z}/kblackboard_Z / italic_k × blackboard_Z / italic_k preserves 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y pointwise. Therefore, the mapping f𝑓\displaystyle fitalic_f is generically k𝑘\displaystyle kitalic_k-to-one. The mapping f0𝔖4superscriptsubscript𝑓0subscript𝔖4\displaystyle f_{0}^{\mathfrak{S}_{4}}italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT of Example 2.7 has

𝔖4𝒴0=(1 2),(3 4)/2×/2𝔖4𝒴0=(1 2)/2.formulae-sequencesuperscriptsubscript𝔖4subscript𝒴0123422subscriptsubscript𝔖4subscript𝒴0delimited-⟨⟩122\displaystyle{\mathfrak{S}_{4}}^{\mathcal{Y}_{0}}=\langle(1\,2),(3\,4)\rangle%\cong\mathbb{Z}/2\times\mathbb{Z}/2\quad\text{}\quad{\mathfrak{S}_{4}}_{%\mathcal{Y}_{0}}=\langle(1\,2)\rangle\cong\mathbb{Z}/2.fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = ⟨ ( 1 2 ) , ( 3 4 ) ⟩ ≅ blackboard_Z / 2 × blackboard_Z / 2 fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUBSCRIPT caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ⟨ ( 1 2 ) ⟩ ≅ blackboard_Z / 2 .

Therefore, f0𝔖4superscriptsubscript𝑓0subscript𝔖4\displaystyle f_{0}^{\mathfrak{S}_{4}}italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT parametrizes the discriminant of ω𝜔\displaystyle\omegaitalic_ω in a two-to-one way.

Corollary 2.10.

Let f𝑓\displaystyle fitalic_f be a reflection mapping such that f:𝒴f(𝒴):𝑓𝒴𝑓𝒴\displaystyle f\colon\mathcal{Y}\to f(\mathcal{Y})italic_f : caligraphic_Y → italic_f ( caligraphic_Y ) is proper. Then, f𝑓\displaystyle fitalic_f is generically one-to-one if and only if, for all σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }, dim((𝒴σ𝒴)Fixσ)n1dim𝒴𝜎𝒴Fix𝜎𝑛1\displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1.

Proof.

We may assume ω(𝒴)𝜔𝒴\displaystyle\omega(\mathcal{Y})italic_ω ( caligraphic_Y ) to be irreducible, for neither the generically one-to-one property nor the condition dim((𝒴σ𝒴)Fixσ)n1dim𝒴𝜎𝒴Fix𝜎𝑛1\displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1 will be affected if we consider the irreducible components of ω(𝒴)𝜔𝒴\displaystyle\omega(\mathcal{Y})italic_ω ( caligraphic_Y ) separately. The condition dim((𝒴σ𝒴)Fixσ)n1dim𝒴𝜎𝒴Fix𝜎𝑛1\displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1 is equivalent to the statement that any σW𝜎𝑊\displaystyle\sigma\in Witalic_σ ∈ italic_W must satisfy either 𝒴σ𝒴𝒴𝜎𝒴\displaystyle\mathcal{Y}\neq\sigma\mathcal{Y}caligraphic_Y ≠ italic_σ caligraphic_Y or 𝒴Fixσ𝒴Fix𝜎\displaystyle\mathcal{Y}\subseteq\operatorname{Fix}\sigmacaligraphic_Y ⊆ roman_Fix italic_σ, that is, that any σW𝒴𝜎superscript𝑊𝒴\displaystyle\sigma\in W^{\mathcal{Y}}italic_σ ∈ italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT must be contained in W𝒴subscript𝑊𝒴\displaystyle W_{\mathcal{Y}}italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT.∎

In order to prove our formulas for ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f, we need the next result. Since the proof is slightly involved and the statement is quite clear, we postpone the proof until Appendix A.

Lemma 2.11 (Generically One-To-One Unfolding).

Any multi-germ of reflection mapping admits a one-parameter W𝑊\displaystyle Witalic_W-unfolding, given by 𝒴~𝒱×~𝒴𝒱\displaystyle\widetilde{\mathcal{Y}}\subseteq\mathcal{V}\times\mathbb{C}over~ start_ARG caligraphic_Y end_ARG ⊆ caligraphic_V × blackboard_C, such that dim(𝒴~σ𝒴~)<dim𝒴~dim~𝒴𝜎~𝒴dim~𝒴\displaystyle\operatorname{dim}(\widetilde{\mathcal{Y}}\cap\sigma\widetilde{%\mathcal{Y}})<\operatorname{dim}\widetilde{\mathcal{Y}}roman_dim ( over~ start_ARG caligraphic_Y end_ARG ∩ italic_σ over~ start_ARG caligraphic_Y end_ARG ) < roman_dim over~ start_ARG caligraphic_Y end_ARG, for all σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }.In particular, this unfolding is generically one-to-one.

Fitting ideals

It is well known that the image of a finite holomorphic mapping is an analytic set (indeed it is enough for the mapping to be proper). However, given an unfolding F=(ft,t)𝐹subscript𝑓𝑡𝑡\displaystyle F=(f_{t},t)italic_F = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t ), the ideal of the image of f0subscript𝑓0\displaystyle f_{0}italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT need not be the same as the result of computing the ideal of the image of F𝐹\displaystyle Fitalic_F and replacing t=0𝑡0\displaystyle t=0italic_t = 0. This is a problem for the study of singular mappings, where deformations are regarded as an essential part of the theory. Luckily enough, there is a solution consisting on declaring the image of a finite mapping f:𝒴𝒵:𝑓𝒴𝒵\displaystyle f\colon\mathcal{Y}\to\mathcal{Z}italic_f : caligraphic_Y → caligraphic_Z to be, rather than just a set, a complex space

Imf=V(0(f𝒪𝒴)),Im𝑓𝑉subscript0subscript𝑓subscript𝒪𝒴\displaystyle\operatorname{Im}f=V(\mathcal{F}_{0}(f_{*}\mathcal{O}_{\mathcal{Y%}})),roman_Im italic_f = italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) ,

where 0(f𝒪𝒴)subscript0subscript𝑓subscript𝒪𝒴\displaystyle\mathcal{F}_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) stands for the 00\displaystyle 0th Fitting ideal sheaf of the pushforward module. This sometimes gives ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f a non-reduced analytic structure, but this is the price we pay in order for the analytic structure to behave well under deformations. For map-germs, one uses the 00\displaystyle 0th Fitting ideal, written F0(f𝒪𝒴)subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ). For information about Fitting ideals, we refer to [11]. We only include here the results we need.

Proposition 2.12.

If F=(ft,t):𝒴×Δ𝒵×Δ:𝐹subscript𝑓𝑡𝑡𝒴Δ𝒵Δ\displaystyle F=(f_{t},t)\colon\mathcal{Y}\times\Delta\to\mathcal{Z}\times\Deltaitalic_F = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t ) : caligraphic_Y × roman_Δ → caligraphic_Z × roman_Δ is a finite mapping and ϵΔitalic-ϵΔ\displaystyle\epsilon\in\Deltaitalic_ϵ ∈ roman_Δ then V(0(fϵ𝒪𝒴))=V(0(F𝒪𝒴)){t=ϵ}𝑉subscript0subscript𝑓italic-ϵsubscript𝒪𝒴𝑉subscript0subscript𝐹subscript𝒪𝒴𝑡italic-ϵ\displaystyle V(\mathcal{F}_{0}(f_{\epsilon*}\mathcal{O}_{\mathcal{Y}}))=V(%\mathcal{F}_{0}(F_{*}\mathcal{O}_{\mathcal{Y}}))\cap\{t=\epsilon\}italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_ϵ ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) = italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_F start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) ∩ { italic_t = italic_ϵ }.

Proposition 2.13.

Let f:Xn+1:𝑓𝑋superscript𝑛1\displaystyle f\colon X\to\mathbb{C}^{n+1}italic_f : italic_X → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT be a finite mapping defined on a reduced n𝑛\displaystyle nitalic_n-dimensional Cohen-Macaulay space, and assume the irreducible decomposition of X𝑋\displaystyle Xitalic_X to be X1,,Xmsubscript𝑋1subscript𝑋𝑚\displaystyle X_{1},\dots,X_{m}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT. Let gisubscript𝑔𝑖\displaystyle g_{i}italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be a generator of the ideal of f(Xi)𝑓subscript𝑋𝑖\displaystyle f(X_{i})italic_f ( italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) in n+1superscript𝑛1\displaystyle\mathbb{C}^{n+1}blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT, and let disubscript𝑑𝑖\displaystyle d_{i}italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be the degree of f𝑓\displaystyle fitalic_f restricted to Xisubscript𝑋𝑖\displaystyle X_{i}italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Then F0(f𝒪X)subscript𝐹0subscript𝑓subscript𝒪𝑋\displaystyle F_{0}(f_{*}\mathcal{O}_{X})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) is a principal ideal, generated by

g=i=1mgidi.𝑔superscriptsubscriptproduct𝑖1𝑚superscriptsubscript𝑔𝑖subscript𝑑𝑖\displaystyle g=\prod_{i=1}^{m}g_{i}^{d_{i}}.italic_g = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT .

The first result follows from [11, Lemma 1.2], the second is [11, Proposition 3.2]. The next one is a slight modification, tailored to our needs:

Proposition 2.14.

Let f:Xn+1:𝑓𝑋superscript𝑛1\displaystyle f\colon X\to\mathbb{C}^{n+1}italic_f : italic_X → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT be a finite map-germ defined on an n𝑛\displaystyle nitalic_n-dimensional Cohen-Macaulay space. Let X1,,Xrsubscript𝑋1subscript𝑋𝑟\displaystyle X_{1},\dots,X_{r}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT be n𝑛\displaystyle nitalic_n-dimensional Cohen-Macaulay complex spaces, forming a set theoretical decomposition X=i=1rXi𝑋superscriptsubscript𝑖1𝑟subscript𝑋𝑖\displaystyle X=\cup_{i=1}^{r}X_{i}italic_X = ∪ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT,where Xisubscript𝑋𝑖\displaystyle X_{i}italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and Xjsubscript𝑋𝑗\displaystyle X_{j}italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT have no common components if ij𝑖𝑗\displaystyle i\neq jitalic_i ≠ italic_j.Assume each Xisubscript𝑋𝑖\displaystyle X_{i}italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to be isomorphic to X𝑋\displaystyle Xitalic_X on an open dense subset of Xisubscript𝑋𝑖\displaystyle X_{i}italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Then,

F0(f𝒪X)=i=1rF0((f|Xi)𝒪Xi).subscript𝐹0subscript𝑓subscript𝒪𝑋superscriptsubscriptproduct𝑖1𝑟subscript𝐹0subscriptevaluated-at𝑓subscript𝑋𝑖subscript𝒪subscript𝑋𝑖\displaystyle F_{0}(f_{*}\mathcal{O}_{X})=\prod_{i=1}^{r}F_{0}((f|_{X_{i}})_{*%}\mathcal{O}_{X_{i}}).italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_f | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .
Proof.

Let X~~𝑋\displaystyle\tilde{X}over~ start_ARG italic_X end_ARG be the disjoint union of the spaces Xisubscript𝑋𝑖\displaystyle X_{i}italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and take the obvious mapping f~:X~n+1:~𝑓~𝑋superscript𝑛1\displaystyle\tilde{f}\colon\tilde{X}\to\mathbb{C}^{n+1}over~ start_ARG italic_f end_ARG : over~ start_ARG italic_X end_ARG → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT. Since being Cohen-Macaulay is a local property satisfied by each of the Xisubscript𝑋𝑖\displaystyle X_{i}italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, the space X~~𝑋\displaystyle\tilde{X}over~ start_ARG italic_X end_ARG is Cohen-Macaulay. Since

f~𝒪X~=i=1r(f|Xi)𝒪Xi,subscript~𝑓subscript𝒪~𝑋superscriptsubscriptdirect-sum𝑖1𝑟subscriptevaluated-at𝑓subscript𝑋𝑖subscript𝒪subscript𝑋𝑖\displaystyle\tilde{f}_{*}\mathcal{O}_{\tilde{X}}=\bigoplus_{i=1}^{r}(f|_{X_{i%}})_{*}\mathcal{O}_{X_{i}},over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT = ⨁ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_f | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,

it follows from the construction of Fitting ideals that F0(f~𝒪X~)=Πi=1rF0((f|Xi)𝒪Xi)subscript𝐹0subscript~𝑓subscript𝒪~𝑋superscriptsubscriptΠ𝑖1𝑟subscript𝐹0subscriptevaluated-at𝑓subscript𝑋𝑖subscript𝒪subscript𝑋𝑖\displaystyle F_{0}(\tilde{f}_{*}\mathcal{O}_{\tilde{X}})=\Pi_{i=1}^{r}F_{0}((%f|_{X_{i}})_{*}\mathcal{O}_{X_{i}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ) = roman_Π start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_f | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ). Since f𝑓\displaystyle fitalic_f and f~~𝑓\displaystyle\tilde{f}over~ start_ARG italic_f end_ARG are the same map on an open dense subset of their targets, it follows thatthe stalks of F0(f~𝒪X~)subscript𝐹0subscript~𝑓subscript𝒪~𝑋\displaystyle F_{0}(\tilde{f}_{*}\mathcal{O}_{\tilde{X}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ) and F0(f𝒪X)subscript𝐹0subscript𝑓subscript𝒪𝑋\displaystyle F_{0}(f_{*}\mathcal{O}_{X})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) are the same on that open dense subset. But F0(f~𝒪X~)subscript𝐹0subscript~𝑓subscript𝒪~𝑋\displaystyle F_{0}(\tilde{f}_{*}\mathcal{O}_{\tilde{X}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ) and F0(f𝒪X)subscript𝐹0subscript𝑓subscript𝒪𝑋\displaystyle F_{0}(f_{*}\mathcal{O}_{X})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) are principal ideals, hence they must agree.∎

3. The image of a reflection mapping 𝒴nn+1superscript𝒴𝑛superscript𝑛1\displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1}caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT

In this section we show explicit formulas for the image of a reflection map 𝒴nn+1superscript𝒴𝑛superscript𝑛1\displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1}caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT. For any finite map-germ f:(𝒴n,0)(𝒵n+1,0):𝑓superscript𝒴𝑛0superscript𝒵𝑛10\displaystyle f\colon(\mathcal{Y}^{n},0)\to(\mathcal{Z}^{n+1},0)italic_f : ( caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( caligraphic_Z start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , 0 ) between complex manifolds, the ideal F0(f𝒪𝒴)subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) is principal (this holds, more generally, whenever 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is an n𝑛\displaystyle nitalic_n-dimensional Cohen Macaulay space, and it follows from [11, Section 2.2]). Hence, letting g𝑔\displaystyle gitalic_g be a generator of F0(f𝒪𝒴)subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ), the image of f𝑓\displaystyle fitalic_f is

Imf=V(g).Im𝑓𝑉𝑔\displaystyle\operatorname{Im}f=V(g).roman_Im italic_f = italic_V ( italic_g ) .

Putting together Proposition 2.13 and Corollary 2.10, one obtains what follows:

Proposition 3.1.

For any reflection mapping 𝒴nn+1superscript𝒴𝑛superscript𝑛1\displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1}caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT, the space ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f is reduced if and only if f𝑓\displaystyle fitalic_f is generically one-to-one, if and only if dim((𝒴σ𝒴)Fixσ)n1dim𝒴𝜎𝒴Fix𝜎𝑛1\displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1, for all σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }, .

Theorem 3.2.

For any reflection mapping 𝒴nn+1superscript𝒴𝑛superscript𝑛1\displaystyle\mathcal{Y}^{n}\to\mathcal{\mathbb{C}}^{n+1}caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT, ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f is the zero locus of

g=σW(σL)s,𝑔subscriptproduct𝜎𝑊𝜎𝐿𝑠\displaystyle g=\prod_{\sigma\in W}(\sigma L)\circ s,italic_g = ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT ( italic_σ italic_L ) ∘ italic_s ,

where s:n+1𝒱:𝑠superscript𝑛1𝒱\displaystyle s\colon\mathbb{C}^{n+1}\to\mathcal{V}italic_s : blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT → caligraphic_V is a section of ω𝜔\displaystyle\omegaitalic_ω. Equivalently, g(X)=Πuω1(X)L(u)|Wu|𝑔𝑋subscriptΠ𝑢superscript𝜔1𝑋𝐿superscript𝑢superscript𝑊𝑢\displaystyle g(X)=\Pi_{u\in\omega^{-1}(X)}L(u)^{|W^{u}|}italic_g ( italic_X ) = roman_Π start_POSTSUBSCRIPT italic_u ∈ italic_ω start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT italic_L ( italic_u ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT | end_POSTSUPERSCRIPT.

Proof.

It is immediate that g𝑔\displaystyle gitalic_g vanishes precisely at ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f, hence we must check that g𝑔\displaystyle gitalic_g is holomorphic and that the analytic structure of V(g)𝑉𝑔\displaystyle V(g)italic_V ( italic_g ) is that of V(F0(f𝒪𝒴))𝑉subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}))italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ). This may be verified locally in the target and, for simplicity, we will do it just at the origin.

Before comparing both structures, we show that g𝑔\displaystyle gitalic_g is holomorphic and study the space V(g)𝑉𝑔\displaystyle V(g)italic_V ( italic_g ). The ring hom*omorphism ω:𝒪n+1𝒪𝒱,0:superscript𝜔subscript𝒪𝑛1subscript𝒪𝒱0\displaystyle\omega^{*}\colon\mathcal{O}_{n+1}\to\mathcal{O}_{\mathcal{V},0}italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT : caligraphic_O start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT → caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT may be identified with the inclusion 𝒪𝒱,0W𝒪𝒱,0superscriptsubscript𝒪𝒱0𝑊subscript𝒪𝒱0\displaystyle\mathcal{O}_{\mathcal{V},0}^{W}\hookrightarrow\mathcal{O}_{%\mathcal{V},0}caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT ↪ caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT, where 𝒪𝒱,0Wsuperscriptsubscript𝒪𝒱0𝑊\displaystyle\mathcal{O}_{\mathcal{V},0}^{W}caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT stands for the subring of W𝑊\displaystyle Witalic_W-invariant germs. This identifies the ideal ω1(ΠσWσL)\displaystyle\omega_{*}^{-1}(\langle\Pi_{\sigma\in W}\sigma L)\rangleitalic_ω start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ) ⟩ in 𝒪n+1subscript𝒪𝑛1\displaystyle\mathcal{O}_{n+1}caligraphic_O start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT with ΠσWσL𝒪𝒱,0Wdelimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿superscriptsubscript𝒪𝒱0𝑊\displaystyle\langle\Pi_{\sigma\in W}\sigma L\rangle\cap\mathcal{O}_{\mathcal{%V},0}^{W}⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ ∩ caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT. From the fact that ΠσWσLdelimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿\displaystyle\langle\Pi_{\sigma\in W}\sigma L\rangle⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ is a principal ideal generated by a W𝑊\displaystyle Witalic_W-invariant function, it follows that this ideal is precisely the ideal generated by ΠσWσLsubscriptΠ𝜎𝑊𝜎𝐿\displaystyle\Pi_{\sigma\in W}\sigma Lroman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L in 𝒪𝒱,0Wsuperscriptsubscript𝒪𝒱0𝑊\displaystyle\mathcal{O}_{\mathcal{V},0}^{W}caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT. In particular, ω1(ΠσWσL)superscriptsubscript𝜔1subscriptΠ𝜎𝑊𝜎𝐿\displaystyle\omega_{*}^{-1}(\Pi_{\sigma\in W}\sigma L)italic_ω start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ) is a principal ideal generated by a holomorphic function g~~𝑔\displaystyle\tilde{g}over~ start_ARG italic_g end_ARG, such that ΠσWσL=g~ωsubscriptΠ𝜎𝑊𝜎𝐿~𝑔𝜔\displaystyle\Pi_{\sigma\in W}\sigma L=\tilde{g}\circ\omegaroman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L = over~ start_ARG italic_g end_ARG ∘ italic_ω. Since ω𝜔\displaystyle\omegaitalic_ω is surjective, the function g~~𝑔\displaystyle\tilde{g}over~ start_ARG italic_g end_ARG is uniquely determined, not only among the holomorphic functions, but among all functions n+1superscript𝑛1\displaystyle\mathbb{C}^{n+1}\to\mathbb{C}blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT → blackboard_C. Since the function g(X)=Πuω1(X)L(u)|Wu|𝑔𝑋subscriptΠ𝑢superscript𝜔1𝑋𝐿superscript𝑢superscript𝑊𝑢\displaystyle g(X)=\Pi_{u\in\omega^{-1}(X)}L(u)^{|W^{u}|}italic_g ( italic_X ) = roman_Π start_POSTSUBSCRIPT italic_u ∈ italic_ω start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT italic_L ( italic_u ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT | end_POSTSUPERSCRIPTsatisfies the desired equality, we conclude g=g~𝑔~𝑔\displaystyle g=\tilde{g}italic_g = over~ start_ARG italic_g end_ARG and, in particular, g𝑔\displaystyle gitalic_g is holomorphic. Moreover, we have identified the coordinate ring of V(g)𝑉𝑔\displaystyle V(g)italic_V ( italic_g ) with the quotient of 𝒪𝒱Wsuperscriptsubscript𝒪𝒱𝑊\displaystyle\mathcal{O}_{\mathcal{V}}^{W}caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT by ΠσWσL𝒪𝒱,0Wdelimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿superscriptsubscript𝒪𝒱0𝑊\displaystyle\langle\Pi_{\sigma\in W}\sigma L\rangle\cap\mathcal{O}_{\mathcal{%V},0}^{W}⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ ∩ caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT. Note that this ring is a subring of 𝒪𝒱/ΠσWσLsubscript𝒪𝒱delimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿\displaystyle\mathcal{O}_{\mathcal{V}}/\langle\Pi_{\sigma\in W}\sigma L\ranglecaligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT / ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩.

Now we show V(g)V(F0(f𝒪𝒴))𝑉𝑔𝑉subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle V(g)\cong V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}))italic_V ( italic_g ) ≅ italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ). Obviously, the explicit formula given for g𝑔\displaystyle gitalic_g behaves well under W𝑊\displaystyle Witalic_W-unfoldings in the same way F0(f𝒪𝒴)subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) does for any unfolding (see Proposition 2.12). Consequently, it suffices to show the isomorphism for an unfolding of f𝑓\displaystyle fitalic_f. Hence, in view of the Generically One-to-one Unfolding Lemma 2.11, we may assume f𝑓\displaystyle fitalic_f to satisfy dim(𝒴σ𝒴)n1dim𝒴𝜎𝒴𝑛1\displaystyle\operatorname{dim}(\mathcal{Y}\cap\sigma\mathcal{Y})\leq n-1roman_dim ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ≤ italic_n - 1. Since V(g)𝑉𝑔\displaystyle V(g)italic_V ( italic_g ) and V(F0(f𝒪𝒴))𝑉subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}))italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) are the same at the set theoretical level, it suffices for both spaces to be reduced for them to be equal. The space V(F0(f𝒪𝒴))𝑉subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}))italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) is reduced by Proposition 3.1. At the same time the condition dim(𝒴σ𝒴)n1dim𝒴𝜎𝒴𝑛1\displaystyle\operatorname{dim}(\mathcal{Y}\cap\sigma\mathcal{Y})\leq n-1roman_dim ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ≤ italic_n - 1 is equivalent to the condition that V(ΠσWσL)𝑉subscriptΠ𝜎𝑊𝜎𝐿\displaystyle V(\Pi_{\sigma\in W}\sigma L)italic_V ( roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ) is reduced, which forces V(g)𝑉𝑔\displaystyle V(g)italic_V ( italic_g ) to be reduced because, as we mentioned before, the stalk of 𝒪V(g)subscript𝒪𝑉𝑔\displaystyle\mathcal{O}_{V(g)}caligraphic_O start_POSTSUBSCRIPT italic_V ( italic_g ) end_POSTSUBSCRIPT is a subrings of stalks of 𝒪𝒱/ΠσWσLsubscript𝒪𝒱delimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿\displaystyle\mathcal{O}_{\mathcal{V}}/\langle\Pi_{\sigma\in W}\sigma L\ranglecaligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT / ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩.∎

Remark 3.3.

The same formula applies to compute images of singular hypersurfaces. To be precise,if 𝒴=V(L)𝒱𝒴𝑉𝐿𝒱\displaystyle\mathcal{Y}=V(L)\subseteq\mathcal{V}caligraphic_Y = italic_V ( italic_L ) ⊆ caligraphic_V is a singular hypersurface (instead of a complex manifold), then g=ΠσW(σL)s𝑔subscriptΠ𝜎𝑊𝜎𝐿𝑠\displaystyle g=\Pi_{\sigma\in W}(\sigma L)\circ sitalic_g = roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT ( italic_σ italic_L ) ∘ italic_s computes a generator of the ideal F0((ω|𝒴)𝒪𝒴)\displaystyle F_{0}((\omega_{|_{\mathcal{Y}}})_{*}\mathcal{O}_{\mathcal{Y}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_ω start_POSTSUBSCRIPT | start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ), which defines the image of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y by ω𝜔\displaystyle\omegaitalic_ω. Briefly speaking, the formula holds because it is correct on the dense open subset where 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is smooth, but this forces it to be correct everywhere. If 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is non reduced, one shows the claim by taking a W𝑊\displaystyle Witalic_W-unfolding with reduced generic fiber.

Example 3.4.

Consider the group /d1××/dn+1subscript𝑑1subscript𝑑𝑛1\displaystyle\mathbb{Z}/d_{1}\times\dots\times\mathbb{Z}/d_{n+1}blackboard_Z / italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × ⋯ × blackboard_Z / italic_d start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT acting on n+1superscript𝑛1\displaystyle\mathbb{C}^{n+1}blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT. Then,

g=0ai<diL(ξ1a1X1d1,,ξn+1an+1X1dn+1)𝑔subscriptproduct0subscript𝑎𝑖subscript𝑑𝑖𝐿superscriptsubscript𝜉1subscript𝑎1superscript𝑋1subscript𝑑1superscriptsubscript𝜉𝑛1subscript𝑎𝑛1superscript𝑋1subscript𝑑𝑛1\displaystyle g=\prod_{\begin{subarray}{c}0\leq a_{i}<d_{i}\end{subarray}}L(%\xi_{1}^{a_{1}}X^{\frac{1}{d_{1}}},\dots,\xi_{n+1}^{a_{n+1}}X^{\frac{1}{d_{n+1%}}})italic_g = ∏ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 0 ≤ italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT italic_L ( italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT , … , italic_ξ start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT )

One does not need to worry about the definition of the complex square root, because any choice of a section of ω𝜔\displaystyle\omegaitalic_ω will give the same final result.

Take, for example the fold mappings (x,y)(x,y2,yP(x,y2))maps-to𝑥𝑦𝑥superscript𝑦2𝑦𝑃𝑥superscript𝑦2\displaystyle(x,y)\mapsto(x,y^{2},yP(x,y^{2}))( italic_x , italic_y ) ↦ ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y italic_P ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) of Example 2.4. The ideal of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is generated by L(u,v,w)=wvP(u,v2)𝐿𝑢𝑣𝑤𝑤𝑣𝑃𝑢superscript𝑣2\displaystyle L(u,v,w)=w-vP(u,v^{2})italic_L ( italic_u , italic_v , italic_w ) = italic_w - italic_v italic_P ( italic_u , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), hence the image is the zero locus of

g=(ZYP(X,Y))(Z+YP(X,Y))=Z2YP2(X,Y).𝑔𝑍𝑌𝑃𝑋𝑌𝑍𝑌𝑃𝑋𝑌superscript𝑍2𝑌superscript𝑃2𝑋𝑌\displaystyle g=(Z-\sqrt{Y}P(X,Y))(Z+\sqrt{Y}P(X,Y))=Z^{2}-YP^{2}(X,Y).italic_g = ( italic_Z - square-root start_ARG italic_Y end_ARG italic_P ( italic_X , italic_Y ) ) ( italic_Z + square-root start_ARG italic_Y end_ARG italic_P ( italic_X , italic_Y ) ) = italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_Y italic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_X , italic_Y ) .

For double folds (x,y)(x2,y2,xP1(x2,y2)+yP2(x2,y2)+xyP3(x2,y2))maps-to𝑥𝑦superscript𝑥2superscript𝑦2𝑥subscript𝑃1superscript𝑥2superscript𝑦2𝑦subscript𝑃2superscript𝑥2superscript𝑦2𝑥𝑦subscript𝑃3superscript𝑥2superscript𝑦2\displaystyle(x,y)\mapsto(x^{2},y^{2},xP_{1}(x^{2},y^{2})+yP_{2}(x^{2},y^{2})+%xyP_{3}(x^{2},y^{2}))( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_x italic_y italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) (also Example 2.4) one has L(u,v,w)=wuP1(u2,v2)vP2(u2,v2)uvP3(u2,v2)𝐿𝑢𝑣𝑤𝑤𝑢subscript𝑃1superscript𝑢2superscript𝑣2𝑣subscript𝑃2superscript𝑢2superscript𝑣2𝑢𝑣subscript𝑃3superscript𝑢2superscript𝑣2\displaystyle L(u,v,w)=w-uP_{1}(u^{2},v^{2})-vP_{2}(u^{2},v^{2})-uvP_{3}(u^{2}%,v^{2})italic_L ( italic_u , italic_v , italic_w ) = italic_w - italic_u italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - italic_v italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - italic_u italic_v italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) and, writing Pi=Pi(X,Y)subscript𝑃𝑖subscript𝑃𝑖𝑋𝑌\displaystyle P_{i}=P_{i}(X,Y)italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_X , italic_Y ), one gets

g=𝑔absent\displaystyle\displaystyle g=italic_g =(ZXP1YP2XYP3)(Z+XP1YP2+XYP3)\displaystyle\displaystyle(Z-\sqrt{X}P_{1}-\sqrt{Y}P_{2}-\sqrt{XY}P_{3})\cdot(%Z+\sqrt{X}P_{1}-\sqrt{Y}P_{2}+\sqrt{XY}P_{3})\cdot( italic_Z - square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⋅ ( italic_Z + square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⋅
(ZXP1+YP2+XYP3)(Z+XP1+YP2XYP3)𝑍𝑋subscript𝑃1𝑌subscript𝑃2𝑋𝑌subscript𝑃3𝑍𝑋subscript𝑃1𝑌subscript𝑃2𝑋𝑌subscript𝑃3\displaystyle\displaystyle(Z-\sqrt{X}P_{1}+\sqrt{Y}P_{2}+\sqrt{XY}P_{3})\cdot(%Z+\sqrt{X}P_{1}+\sqrt{Y}P_{2}-\sqrt{XY}P_{3})( italic_Z - square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⋅ ( italic_Z + square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT )
=\displaystyle\displaystyle==(Z2XP12YP22XYP32)24XY(2P1P2P3+P12P22+XP12P32+YP22P32).superscriptsuperscript𝑍2𝑋superscriptsubscript𝑃12𝑌superscriptsubscript𝑃22𝑋𝑌superscriptsubscript𝑃3224𝑋𝑌2subscript𝑃1subscript𝑃2subscript𝑃3superscriptsubscript𝑃12superscriptsubscript𝑃22𝑋superscriptsubscript𝑃12superscriptsubscript𝑃32𝑌superscriptsubscript𝑃22superscriptsubscript𝑃32\displaystyle\displaystyle(Z^{2}-XP_{1}^{2}-YP_{2}^{2}-XYP_{3}^{2})^{2}-4XY(2P%_{1}P_{2}P_{3}+P_{1}^{2}P_{2}^{2}+XP_{1}^{2}P_{3}^{2}+YP_{2}^{2}P_{3}^{2}).( italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_X italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_Y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_X italic_Y italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_X italic_Y ( 2 italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_X italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_Y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .
Example 3.5 (Image of fD8superscript𝑓subscript𝐷8\displaystyle f^{D_{8}}italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT).

Consider the D8subscript𝐷8\displaystyle D_{8}italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-reflected graph of Example 2.4,

f1D8:(x,y)(x2+y2,x2y2,2x+y).:subscriptsuperscript𝑓subscript𝐷81maps-to𝑥𝑦superscript𝑥2superscript𝑦2superscript𝑥2superscript𝑦22𝑥𝑦\displaystyle f^{D_{8}}_{1}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x+y).italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x + italic_y ) .

A generator of the ideal of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is L(u,v,w)=w2uv𝐿𝑢𝑣𝑤𝑤2𝑢𝑣\displaystyle L(u,v,w)=w-2u-vitalic_L ( italic_u , italic_v , italic_w ) = italic_w - 2 italic_u - italic_v and a section of ω𝜔\displaystyle\omegaitalic_ω is, for example,

s(X,Y,Z)=(2YXX24Y,XX24Y2,Z).𝑠𝑋𝑌𝑍2𝑌𝑋superscript𝑋24𝑌𝑋superscript𝑋24𝑌2𝑍\displaystyle s(X,Y,Z)=\left(\sqrt{\frac{2Y}{X-\sqrt{X^{2}-4Y}}},\sqrt{\frac{X%-\sqrt{X^{2}-4Y}}{2}},Z\right).italic_s ( italic_X , italic_Y , italic_Z ) = ( square-root start_ARG divide start_ARG 2 italic_Y end_ARG start_ARG italic_X - square-root start_ARG italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_Y end_ARG end_ARG end_ARG , square-root start_ARG divide start_ARG italic_X - square-root start_ARG italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_Y end_ARG end_ARG start_ARG 2 end_ARG end_ARG , italic_Z ) .

Multiplying the elements in the orbit of L=w2uv𝐿𝑤2𝑢𝑣\displaystyle L=w-2u-vitalic_L = italic_w - 2 italic_u - italic_v gives the function

σWσL=subscriptproduct𝜎𝑊𝜎𝐿absent\displaystyle\displaystyle\prod_{\sigma\in W}\sigma L=∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L =(w2uv)(w+2uv)(w2uv)(w2u+v)𝑤2𝑢𝑣𝑤2𝑢𝑣𝑤2𝑢𝑣𝑤2𝑢𝑣\displaystyle\displaystyle(w-2u-v)(w+2u-v)(w-2u-v)(w-2u+v)( italic_w - 2 italic_u - italic_v ) ( italic_w + 2 italic_u - italic_v ) ( italic_w - 2 italic_u - italic_v ) ( italic_w - 2 italic_u + italic_v )
(w+2v+u)(w2v+u)(w+2u+v)(w+2vu).𝑤2𝑣𝑢𝑤2𝑣𝑢𝑤2𝑢𝑣𝑤2𝑣𝑢\displaystyle\displaystyle(w+2v+u)(w-2v+u)(w+2u+v)(w+2v-u).( italic_w + 2 italic_v + italic_u ) ( italic_w - 2 italic_v + italic_u ) ( italic_w + 2 italic_u + italic_v ) ( italic_w + 2 italic_v - italic_u ) .

Taking the composition with s𝑠\displaystyle sitalic_s, the square roots vanish and we obtain the expression

g=16X4200X2Y+625Y240X3Z2+70XYZ2+33X2Z414YZ410XZ6+Z8.𝑔16superscript𝑋4200superscript𝑋2𝑌625superscript𝑌240superscript𝑋3superscript𝑍270𝑋𝑌superscript𝑍233superscript𝑋2superscript𝑍414𝑌superscript𝑍410𝑋superscript𝑍6superscript𝑍8\displaystyle g=16X^{4}-200X^{2}Y+625Y^{2}-40X^{3}Z^{2}+70XYZ^{2}+33X^{2}Z^{4}%-14YZ^{4}-10XZ^{6}+Z^{8}.italic_g = 16 italic_X start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 200 italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y + 625 italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 40 italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 70 italic_X italic_Y italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 33 italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 14 italic_Y italic_Z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 10 italic_X italic_Z start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + italic_Z start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT .

The same method gives the equation of the image of

f2D8:(x,y)(x2+y2,x2y2,2x2+3xyy2+2x3+8x2y2xy22y3),:subscriptsuperscript𝑓subscript𝐷82maps-to𝑥𝑦superscript𝑥2superscript𝑦2superscript𝑥2superscript𝑦22superscript𝑥23𝑥𝑦superscript𝑦22superscript𝑥38superscript𝑥2𝑦2𝑥superscript𝑦22superscript𝑦3\displaystyle f^{D_{8}}_{2}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x^{2}+3%xy-y^{2}+2x^{3}+8x^{2}y-2xy^{2}-2y^{3}),italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 8 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ,

but it is too big to be written here. Both surfaces are depicted in Figure 1.

Remark 3.6.

Let f=(ω,H)𝑓𝜔𝐻\displaystyle f=(\omega,H)italic_f = ( italic_ω , italic_H ) be a W𝑊\displaystyle Witalic_W-reflected graph, and let d1,,dnsubscript𝑑1subscript𝑑𝑛\displaystyle d_{1},\dots,d_{n}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be the degrees of the coordinates functions of ω𝜔\displaystyle\omegaitalic_ω. If H𝐻\displaystyle Hitalic_H is hom*ogeneous of degree d𝑑\displaystyle ditalic_d, then f𝑓\displaystyle fitalic_f is obviously hom*ogeneous, with degrees d1,,dn,dsubscript𝑑1subscript𝑑𝑛𝑑\displaystyle d_{1},\dots,d_{n},ditalic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_d. As a consequence of Theorem 3.2, the function g𝑔\displaystyle gitalic_g defining ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f is quasi-hom*ogeneous with weightsd1,,dn,dsubscript𝑑1subscript𝑑𝑛𝑑\displaystyle d_{1},\dots,d_{n},ditalic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_d and degree d|W|𝑑𝑊\displaystyle d|W|italic_d | italic_W |.

Computing the image via elimination of variables

Computing explicit expressions of sections of orbit mappings can be hard and, even if we manage to find them, the formula ΠσWσLssubscriptΠ𝜎𝑊𝜎𝐿𝑠\displaystyle\Pi_{\sigma\in W}\,\sigma L\circ sroman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ∘ italic_s becomes too tedious to compute by hand when we take bigger reflection groups. If we try to implement the expression in some computer software, we face the fact that the coordinate functions of sections are non-polynomial, which is a problem when using commutative algebra software such as Singular. Here we introduce two alternative ways of computing the ideal F0(f𝒪𝒴)subscript𝐹0subscript𝑓subscript𝒪𝒴\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) defining the image, without resorting to sections of ω𝜔\displaystyle\omegaitalic_ω. As a trade-off, this methods use elimination of variables, which is less explicit, but it is a task computers are happy to do, or at least to try to.

In the case at hand, elimination of variables means what follows: Consider the ring [u,X]𝑢𝑋\displaystyle\mathbb{C}[u,X]blackboard_C [ italic_u , italic_X ] of polynomials on the variables u1,,upsubscript𝑢1subscript𝑢𝑝\displaystyle u_{1},\dots,u_{p}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and X1,Xpsubscript𝑋1subscript𝑋𝑝\displaystyle X_{1},\dots X_{p}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT (the same works for, say, the ring of germs of holomorphic functions at the origin). Contained in [u,X]𝑢𝑋\displaystyle\mathbb{C}[u,X]blackboard_C [ italic_u , italic_X ], there is the ideal

J=σWσL(u)+X1ω1(u),,Xpωp(u),𝐽delimited-⟨⟩subscriptproduct𝜎𝑊𝜎𝐿𝑢subscript𝑋1subscript𝜔1𝑢subscript𝑋𝑝subscript𝜔𝑝𝑢\displaystyle J=\langle\prod_{\sigma\in W}\sigma L(u)\rangle+\langle X_{1}-%\omega_{1}(u),\dots,X_{p}-\omega_{p}(u)\rangle,italic_J = ⟨ ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ( italic_u ) ⟩ + ⟨ italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) , … , italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_u ) ⟩ ,

and the subring [X]delimited-[]𝑋\displaystyle\mathbb{C}[X]blackboard_C [ italic_X ] of polynomials in X1,Xpsubscript𝑋1subscript𝑋𝑝\displaystyle X_{1},\dots X_{p}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT. Then, J[X]𝐽delimited-[]𝑋\displaystyle J\cap\mathbb{C}[X]italic_J ∩ blackboard_C [ italic_X ] is an ideal in [X]delimited-[]𝑋\displaystyle\mathbb{C}[X]blackboard_C [ italic_X ], said to be obtained by eliminating the u𝑢\displaystyle uitalic_u variables in J𝐽\displaystyle Jitalic_J. Alternatively, consider the ring hom*omorphism

ω:[X][u],:superscript𝜔delimited-[]𝑋delimited-[]𝑢\displaystyle\omega^{*}\colon\mathbb{C}[X]\to\mathbb{C}[u],italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT : blackboard_C [ italic_X ] → blackboard_C [ italic_u ] ,

given by HHωmaps-to𝐻𝐻𝜔\displaystyle H\mapsto H\circ\omegaitalic_H ↦ italic_H ∘ italic_ω. Then, the elimination can be expressed as

J[X]=(ω)1σWσL(u).𝐽delimited-[]𝑋superscriptsuperscript𝜔1delimited-⟨⟩subscriptproduct𝜎𝑊𝜎𝐿𝑢\displaystyle J\cap\mathbb{C}[X]=(\omega^{*})^{-1}\langle\prod_{\sigma\in W}%\sigma L(u)\rangle.italic_J ∩ blackboard_C [ italic_X ] = ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ( italic_u ) ⟩ .
Proposition 3.7.

For any reflection mapping f:𝒴nn+1:𝑓superscript𝒴𝑛superscript𝑛1\displaystyle f\colon\mathcal{Y}^{n}\to\mathbb{C}^{n+1}italic_f : caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT, ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f is the zero locus of

F0(f𝒪𝒴)=(ω)1σWσL=((ω)1L)|W𝒴:W𝒴|.\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})=(\omega^{*})^{-1}\langle%\prod_{\sigma\in W}\sigma L\rangle=\left((\omega^{*})^{-1}\langle L\rangle%\right)^{|W^{\mathcal{Y}}:W_{\mathcal{Y}}|}.italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) = ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ = ( ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ italic_L ⟩ ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | end_POSTSUPERSCRIPT .
Proof.

The first equality was shown in the proof of Theorem 3.2. For the second equality, let

K=L(u)+X1ω1(u),,Xpωp(u),𝐾delimited-⟨⟩𝐿𝑢subscript𝑋1subscript𝜔1𝑢subscript𝑋𝑝subscript𝜔𝑝𝑢\displaystyle K=\langle L(u)\rangle+\langle X_{1}-\omega_{1}(u),\dots,X_{p}-%\omega_{p}(u)\rangle,italic_K = ⟨ italic_L ( italic_u ) ⟩ + ⟨ italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) , … , italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_u ) ⟩ ,

Since V(K)V(L)=𝒴𝑉𝐾𝑉𝐿𝒴\displaystyle V(K)\cong V(L)=\mathcal{Y}italic_V ( italic_K ) ≅ italic_V ( italic_L ) = caligraphic_Y, it follows that K𝐾\displaystyle Kitalic_K is radical, hence K[X]𝐾delimited-[]𝑋\displaystyle K\cap\mathbb{C}[X]italic_K ∩ blackboard_C [ italic_X ] is radical. This means that K[X]𝐾delimited-[]𝑋\displaystyle K\cap\mathbb{C}[X]italic_K ∩ blackboard_C [ italic_X ] is the (radical) ideal of the image of f𝑓\displaystyle fitalic_f. At the same time, we know by Proposition 2.8 that the degree of f𝑓\displaystyle fitalic_f is |W𝒴:W𝒴|\displaystyle|W^{\mathcal{Y}}:W_{\mathcal{Y}}|| italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT |. Putting both things together, the equality F0(f𝒪𝒴)=(K[X])|W𝒴:W𝒴|\displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})=(K\cap\mathbb{C}[X])^{|W^{%\mathcal{Y}}:W_{\mathcal{Y}}|}italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) = ( italic_K ∩ blackboard_C [ italic_X ] ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | end_POSTSUPERSCRIPT is a direct application of Proposition 2.13.∎

In practice, our experience shows that computing (ω)1ΠσWσLsuperscriptsuperscript𝜔1delimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿\displaystyle(\omega^{*})^{-1}\langle\Pi_{\sigma\in W}\sigma L\rangle( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ is faster than computing (ω)1Lsuperscriptsuperscript𝜔1delimited-⟨⟩𝐿\displaystyle(\omega^{*})^{-1}\langle L\rangle( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ italic_L ⟩, probably due to the fact that ΠσWσLsubscriptΠ𝜎𝑊𝜎𝐿\displaystyle\Pi_{\sigma\in W}\sigma Lroman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L is a W𝑊\displaystyle Witalic_W-invariant function.

Example 3.8.

Consider the family of 𝔖4subscript𝔖4\displaystyle\mathfrak{S_{4}}fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT-reflection mappings of Example 2.7. Sections of the orbit mapping of 𝔖4subscript𝔖4\displaystyle\mathfrak{S_{4}}fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT have horrendous expressions, so computing ImfIm𝑓\displaystyle\operatorname{Im}froman_Im italic_f by means of the expression ΠσWσLssubscriptΠ𝜎𝑊𝜎𝐿𝑠\displaystyle\Pi_{\sigma\in W}\,\sigma L\circ sroman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ∘ italic_s of Theorem 3.2 is not convenient. In contrast, Singular computes (ω)1ΠσWσLsuperscriptsuperscript𝜔1delimited-⟨⟩subscriptΠ𝜎𝑊𝜎𝐿\displaystyle(\omega^{*})^{-1}\langle\Pi_{\sigma\in W}\sigma L\rangle( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ in no time. The equation of the image of the unfolding F=(ft,t)𝐹subscript𝑓𝑡𝑡\displaystyle F=(f_{t},t)italic_F = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t ) is too long to write here but, for t=0𝑡0\displaystyle t=0italic_t = 0 and t=1𝑡1\displaystyle t=1italic_t = 1, we obtain the following equations:

Imf0𝔖4=V(g),g=(2x3y2+x4z27y418xy2z2x2z2+z3)2,formulae-sequenceImsubscriptsuperscript𝑓subscript𝔖40𝑉𝑔𝑔superscript2superscript𝑥3superscript𝑦2superscript𝑥4𝑧27superscript𝑦418𝑥superscript𝑦2𝑧2superscript𝑥2superscript𝑧2superscript𝑧32\displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{0}=V(g),\quad g=(2x^{3}y^{%2}+x^{4}z-27y^{4}-18xy^{2}z-2x^{2}z^{2}+z^{3})^{2},roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_V ( italic_g ) , italic_g = ( 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z - 27 italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 18 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z - 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,
Imf1𝔖4=V(g),g=614656x12174822592x9y216020256x10z+10356692964x6y4+800288220x7y2z+153738321x8z2198333009364x3y633901243950x4y4z662345364x5y2z2685828516x6z3+1202174306137y8+372758486548xy6z+7876328208x2y4z21163406956x3y2z3+1546928326x4z4+40000919994y4z3+1284226020xy2z41713759300x2z5+741200625z6.\displaystyle\begin{split}\operatorname{Im}f^{\mathfrak{S_{4}}}_{1}=V(g),\quadg%=614656x^{12}-174822592x^{9}y^{2}-16020256x^{10}z+10356692964x^{6}y^{4}\\+800288220x^{7}y^{2}z+153738321x^{8}z^{2}-198333009364x^{3}y^{6}-33901243950x^%{4}y^{4}z\\-662345364x^{5}y^{2}z^{2}-685828516x^{6}z^{3}+1202174306137y^{8}+372758486548%xy^{6}z\\+7876328208x^{2}y^{4}z^{2}-1163406956x^{3}y^{2}z^{3}+1546928326x^{4}z^{4}+4000%0919994y^{4}z^{3}\\+1284226020xy^{2}z^{4}-1713759300x^{2}z^{5}+741200625z^{6}.\end{split}start_ROW start_CELL roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_V ( italic_g ) , italic_g = 614656 italic_x start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT - 174822592 italic_x start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 16020256 italic_x start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT italic_z + 10356692964 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL + 800288220 italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z + 153738321 italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 198333009364 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 33901243950 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z end_CELL end_ROW start_ROW start_CELL - 662345364 italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 685828516 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 1202174306137 italic_y start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT + 372758486548 italic_x italic_y start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_z end_CELL end_ROW start_ROW start_CELL + 7876328208 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 1163406956 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 1546928326 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 40000919994 italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL + 1284226020 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 1713759300 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 741200625 italic_z start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT . end_CELL end_ROW

The hypersurces Imf0𝔖4Imsubscriptsuperscript𝑓subscript𝔖40\displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{0}roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Imf1𝔖4Imsubscriptsuperscript𝑓subscript𝔖41\displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{1}roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are depicted in Figure 2. Recall that Imf0𝔖4Imsubscriptsuperscript𝑓subscript𝔖40\displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{0}roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the discriminant of ω𝜔\displaystyle\omegaitalic_ω, with non-reduced structure, and that the exponent 22\displaystyle 22 in the equation reflects the fact that f0𝔖4subscriptsuperscript𝑓subscript𝔖40\displaystyle f^{\mathfrak{S_{4}}}_{0}italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT has degree two (see Example 2.9).

Double points and image of reflection maps (2)
Remark 3.9.

The calculations shown before have been carried out by means of a Singular library for reflection mappings, being developed by the authors of this paper. We are happy to send the latest version to anyone interested.

4. Decomposition of the double point spaces K2(f),D2(f)subscript𝐾2𝑓superscript𝐷2𝑓\displaystyle K_{2}(f),D^{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) , italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ).

Given a germ of singular mapping, studying only the equations of the image somehow means forgetting that these are parametrizable singularities, that is, that these singularities are obtained by glueing one disk by means of a holomorphic mapping (or several disks, in the multi-germ case). Instead, it usual to study singular mappings by means of their multiple-point spaces, which are spaces designed to encode how points in the source glue together to form the image of the map.

There are double point and triple point spaces, as well as higher multiplicity ones, but here we restrict ourselves to double points. Even then, there are several different double point spaces one can look at. Our original interest is to prove an explicit formula for the double point space D(f)𝒴𝐷𝑓𝒴\displaystyle D(f)\subseteq\mathcal{Y}italic_D ( italic_f ) ⊆ caligraphic_Y in the case where f𝑓\displaystyle fitalic_f is a reflection mapping given by a hypersurface 𝒴𝒱𝒴𝒱\displaystyle\mathcal{Y}\subseteq\mathcal{V}caligraphic_Y ⊆ caligraphic_V (see Theorem 5.2. The definitions of D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) and other double point spaces are given later on this section). However, as the logic structure of this and the following section reveal, this is best done by studying first the double point space D2(f)𝒴×𝒴superscript𝐷2𝑓𝒴𝒴\displaystyle D^{2}(f)\subseteq\mathcal{Y}\times\mathcal{Y}italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) ⊆ caligraphic_Y × caligraphic_Y. This in turn requires looking at a more abstract double point space K2(f)superscript𝐾2𝑓\displaystyle K^{2}(f)italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ), which enjoys a key functorial property (Proposition 4.2). The results before Section 5 do not require 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y to be a hypersurface and are given for all codimensions.

Decomposition of the double point space K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f )

Here we study Kleiman’s double points for reflection mappings. We skip many details, for which we refer to [13, 20].For this description of the double point space K2(f)superscript𝐾2𝑓\displaystyle K^{2}(f)italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) for mappings (not necessarily reflection mappings) let 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y be an n𝑛\displaystyle nitalic_n-dimensional complex manifold and assume that it admits a global coordinate system (This is for the sake of simplicity, a standard glueing process shows the results in this section to be valid in general). We write the blowup of the product of two copies of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y along the diagonal as

B2(𝒴)=BlΔ𝒴(𝒴×𝒴)={(u,u,v)𝒴×𝒴×n1v(uu)=0},subscript𝐵2𝒴subscriptBlΔ𝒴𝒴𝒴conditional-set𝑢superscript𝑢𝑣𝒴𝒴superscript𝑛1𝑣superscript𝑢𝑢0\displaystyle B_{2}(\mathcal{Y})=\operatorname{Bl}_{\Delta\mathcal{Y}}(%\mathcal{Y}\times\mathcal{Y})=\{(u,u^{\prime},v)\in\mathcal{Y}\times\mathcal{Y%}\times\mathbb{P}^{n-1}\mid v\wedge(u^{\prime}-u)=0\},italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) = roman_Bl start_POSTSUBSCRIPT roman_Δ caligraphic_Y end_POSTSUBSCRIPT ( caligraphic_Y × caligraphic_Y ) = { ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_v ) ∈ caligraphic_Y × caligraphic_Y × blackboard_P start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ∣ italic_v ∧ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u ) = 0 } ,

where v(uu)=0𝑣superscript𝑢𝑢0\displaystyle v\wedge(u^{\prime}-u)=0italic_v ∧ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u ) = 0 is a shortcut to indicate the vanishing of all 2×222\displaystyle 2\times 22 × 2 minors of the matrix

(u1u1ununv1vn).subscriptsuperscript𝑢1subscript𝑢1subscriptsuperscript𝑢𝑛subscriptsuperscript𝑢𝑛subscript𝑣1subscript𝑣𝑛\displaystyle\left(\begin{array}[]{ccc}u^{\prime}_{1}-u_{1}&\dots&u^{\prime}_{%n}-u^{\prime}_{n}\\v_{1}&\dots&v_{n}\end{array}\right).( start_ARRAY start_ROW start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) .

We write the exceptional divisor as E=Δ𝒴×n1𝐸Δ𝒴superscript𝑛1\displaystyle E=\Delta\mathcal{Y}\times\mathbb{P}^{n-1}italic_E = roman_Δ caligraphic_Y × blackboard_P start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT.

Now let f:𝒴𝒵:𝑓𝒴𝒵\displaystyle f\colon\mathcal{Y}\to\mathcal{Z}italic_f : caligraphic_Y → caligraphic_Z be a holomorphic mapping between manifolds (not necessarily a reflection mapping) of dimensions n𝑛\displaystyle nitalic_n and p𝑝\displaystyle pitalic_p, both admiting a global coordinate system. Think of uusuperscript𝑢𝑢\displaystyle u^{\prime}-uitalic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u and f(u)f(u)𝑓superscript𝑢𝑓𝑢\displaystyle f(u^{\prime})-f(u)italic_f ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_f ( italic_u ) as a vectors with entries in 𝒪𝒴×𝒴subscript𝒪𝒴𝒴\displaystyle\mathcal{O}_{\mathcal{Y}\times\mathcal{Y}}caligraphic_O start_POSTSUBSCRIPT caligraphic_Y × caligraphic_Y end_POSTSUBSCRIPT, of sizes n𝑛\displaystyle nitalic_n and p𝑝\displaystyle pitalic_p, respectively. By Hilbert Nullstellensatz, there exist a p×n𝑝𝑛\displaystyle p\times nitalic_p × italic_n matrix αfsubscript𝛼𝑓\displaystyle\alpha_{f}italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT, with entries in 𝒪𝒴×𝒴subscript𝒪𝒴𝒴\displaystyle\mathcal{O}_{\mathcal{Y}\times\mathcal{Y}}caligraphic_O start_POSTSUBSCRIPT caligraphic_Y × caligraphic_Y end_POSTSUBSCRIPT, such that

f(u)f(u)=αf(uu)𝑓superscript𝑢𝑓𝑢subscript𝛼𝑓superscript𝑢𝑢\displaystyle f(u^{\prime})-f(u)=\alpha_{f}\cdot(u^{\prime}-u)italic_f ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_f ( italic_u ) = italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ⋅ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u )

Then, Kleiman’s double point space is

K2(f)={(u,u,v)B2(𝒴)αf(u,u)v=0}.subscript𝐾2𝑓conditional-set𝑢superscript𝑢𝑣subscript𝐵2𝒴subscript𝛼𝑓𝑢superscript𝑢𝑣0\displaystyle K_{2}(f)=\{(u,u^{\prime},v)\in B_{2}(\mathcal{Y})\mid\alpha_{f}(%u,u^{\prime})\cdot v=0\}.italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = { ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_v ) ∈ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) ∣ italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⋅ italic_v = 0 } .

The proof that K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) does not depend on α𝛼\displaystyle\alphaitalic_α is in [10, Proposition 3.1]. Away from the exceptional divisor, K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) is just the fibered product

K2(f)E(𝒴×𝒵𝒴)Δ𝒴,subscript𝐾2𝑓𝐸subscript𝒵𝒴𝒴Δ𝒴\displaystyle K_{2}(f)\setminus E\cong(\mathcal{Y}\times_{\mathcal{Z}}\mathcal%{Y})\setminus\Delta\mathcal{Y},italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) ∖ italic_E ≅ ( caligraphic_Y × start_POSTSUBSCRIPT caligraphic_Z end_POSTSUBSCRIPT caligraphic_Y ) ∖ roman_Δ caligraphic_Y ,

via the blowup map.On the exceptional divisor, K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) keeps track of the kernel of the differential of f𝑓\displaystyle fitalic_f, as follows:

K2(f)E={(u,u,v)B2(𝒴)vkerdfu}.subscript𝐾2𝑓𝐸conditional-set𝑢𝑢𝑣subscript𝐵2𝒴𝑣kerneldsubscript𝑓𝑢\displaystyle K_{2}(f)\cap E=\{(u,u,v)\in B_{2}(\mathcal{Y})\mid v\in\ker%\operatorname{d}\!f_{u}\}.italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) ∩ italic_E = { ( italic_u , italic_u , italic_v ) ∈ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) ∣ italic_v ∈ roman_ker roman_d italic_f start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } .
Proposition 4.1.

[13, Corollary 5.6]The dimension of K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) is at least 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) has dimension 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p, then it is locally a complete intersection.

The double point spaces K2subscript𝐾2\displaystyle K_{2}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT enjoy the following key functorial property, very much related to the construction of reflection mappings. First, any embedding of complex manifolds, 𝒴𝒱𝒴𝒱\displaystyle\mathcal{Y}\hookrightarrow\mathcal{V}caligraphic_Y ↪ caligraphic_V, induces an embedding B2(𝒴)B2(𝒱)superscript𝐵2𝒴superscript𝐵2𝒱\displaystyle B^{2}(\mathcal{Y})\hookrightarrow B^{2}(\mathcal{V})italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_Y ) ↪ italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_V ).

Proposition 4.2.

[13, Theorem 2.13]Given a mapping F:𝒱𝒵:𝐹𝒱𝒵\displaystyle F\colon\mathcal{V}\to\mathcal{Z}italic_F : caligraphic_V → caligraphic_Z between complex manifolds, the double point space of the restriction f=F|𝒴:𝒴𝒵\displaystyle f=F_{|_{\mathcal{Y}}}\colon\mathcal{Y}\to\mathcal{Z}italic_f = italic_F start_POSTSUBSCRIPT | start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT : caligraphic_Y → caligraphic_Z is

K2(f)=K2(F)B2(𝒴).subscript𝐾2𝑓subscript𝐾2𝐹subscript𝐵2𝒴\displaystyle K_{2}(f)=K_{2}(F)\cap B_{2}(\mathcal{Y}).italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_F ) ∩ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) .

In particular, the double points of reflection mappings are slices of the double points of orbit mappings. Conveniently enough, we understand K2(ω)subscript𝐾2𝜔\displaystyle K_{2}(\omega)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) quite well. Fixed σW{id}𝜎𝑊id\displaystyle\sigma\in W\setminus\{\operatorname{id}\}italic_σ ∈ italic_W ∖ { roman_id }, let r=dimFixσ𝑟dimFix𝜎\displaystyle r=\operatorname{dim}\operatorname{Fix}\sigmaitalic_r = roman_dim roman_Fix italic_σ and choose linear mappings σ:𝒱pr:subscript𝜎𝒱superscript𝑝𝑟\displaystyle\ell_{\sigma}\colon\mathcal{V}\to\mathbb{C}^{p-r}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_p - italic_r end_POSTSUPERSCRIPT and σ:𝒱r:superscriptsubscript𝜎bottom𝒱superscript𝑟\displaystyle\ell_{\sigma}^{\bot}\colon\mathcal{V}\to\mathbb{C}^{r}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT, so that

Fixσ=V(σ)and(Fixσ)=V(σ).formulae-sequenceFix𝜎𝑉subscript𝜎andsuperscriptFix𝜎bottom𝑉superscriptsubscript𝜎bottom\displaystyle\operatorname{Fix}\sigma=V(\ell_{\sigma})\qquad\text{and}\qquad(%\operatorname{Fix}\sigma)^{\bot}=V(\ell_{\sigma}^{\bot}).roman_Fix italic_σ = italic_V ( roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) and ( roman_Fix italic_σ ) start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT = italic_V ( roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ) .

The following description of K2(ω)superscript𝐾2𝜔\displaystyle K^{2}(\omega)italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ω ) is found (with different notation) in [17, Theorem 7.6]:

Proposition 4.3.

The double point space K2(ω)subscript𝐾2𝜔\displaystyle K_{2}(\omega)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) is a p𝑝\displaystyle pitalic_p-dimensional reduced locally complete intersection, with irreducible decomposition

K2(ω)=σW{1}K2σ,subscript𝐾2𝜔subscript𝜎𝑊1superscriptsubscript𝐾2𝜎\displaystyle K_{2}(\omega)=\bigcup_{\sigma\in W\setminus\{1\}}K_{2}^{\sigma},italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ,

where K2σsuperscriptsubscript𝐾2𝜎\displaystyle K_{2}^{\sigma}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT is the blow-up of {(u,σu)u𝒱}conditional-set𝑢𝜎𝑢𝑢𝒱\displaystyle\{(u,\sigma u)\mid u\in\mathcal{V}\}{ ( italic_u , italic_σ italic_u ) ∣ italic_u ∈ caligraphic_V } along ΔFixσΔFix𝜎\displaystyle\Delta\operatorname{Fix}\sigmaroman_Δ roman_Fix italic_σ, embedded in B2(𝒱)subscript𝐵2𝒱\displaystyle B_{2}(\mathcal{V})italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_V ) as

K2σ={(u,σu,v)B2(𝒱)σ(v)=0}.superscriptsubscript𝐾2𝜎conditional-set𝑢𝜎𝑢𝑣superscript𝐵2𝒱superscriptsubscript𝜎bottom𝑣0\displaystyle K_{2}^{\sigma}=\{(u,\sigma u,v)\in B^{2}(\mathcal{V})\mid\ell_{%\sigma}^{\bot}(v)=0\}.italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT = { ( italic_u , italic_σ italic_u , italic_v ) ∈ italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_V ) ∣ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ( italic_v ) = 0 } .

In view of Proposition 4.2, the space K2subscript𝐾2\displaystyle K_{2}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of reflection mappings must inherit a W{1}𝑊1\displaystyle W\setminus\{1\}italic_W ∖ { 1 }-indexed decomposition:

Definition 4.4.

For each σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }, we let K2σ(f)=B2(𝒴)K2σ.superscriptsubscript𝐾2𝜎𝑓subscript𝐵2𝒴superscriptsubscript𝐾2𝜎\displaystyle K_{2}^{\sigma}(f)=B_{2}(\mathcal{Y})\cap K_{2}^{\sigma}.italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) ∩ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT .

As we just mentioned, this gives the set-theoretical decomposition

K2(f)=σW{1}K2σ(f).subscript𝐾2𝑓subscript𝜎𝑊1superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}K_{2}^{\sigma}(f).italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) .

Observe that neither K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) nor K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) need to be reduced, so there is no clear way to upgrade the previous decomposition into a union of complex spaces, because (to the best of the authors’ knowledge) the meaning of a union means in the category of complex spaces is unclear. In any case, since the order of W𝑊\displaystyle Witalic_W is finite, K2(ω)subscript𝐾2𝜔\displaystyle K_{2}(\omega)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) and K2σsuperscriptsubscript𝐾2𝜎\displaystyle K_{2}^{\sigma}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT are locally equal topological spaces at points zK2σ𝑧superscriptsubscript𝐾2𝜎\displaystyle z\in K_{2}^{\sigma}italic_z ∈ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT not contained in any other K2τ,τσsuperscriptsubscript𝐾2𝜏𝜏𝜎\displaystyle K_{2}^{\tau},\tau\neq\sigmaitalic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT , italic_τ ≠ italic_σ. Moreover, since both spaces are reduced, K2(ω)subscript𝐾2𝜔\displaystyle K_{2}(\omega)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) and K2σsuperscriptsubscript𝐾2𝜎\displaystyle K_{2}^{\sigma}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT are locally isomorphic complex spaces at such points. This means that the comparison of analytic structures in the above equality is only problematic at points where different branches K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) and K2τ(f)superscriptsubscript𝐾2𝜏𝑓\displaystyle K_{2}^{\tau}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( italic_f ) meet. To be precise, we have observed what follows:

Lemma 4.5.

Let zK2(f)𝑧subscript𝐾2𝑓\displaystyle z\in K_{2}(f)italic_z ∈ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) be a point contained in K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ). If z𝑧\displaystyle zitalic_z is not contained in K2τ(f)superscriptsubscript𝐾2𝜏𝑓\displaystyle K_{2}^{\tau}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( italic_f ), for any τσ𝜏𝜎\displaystyle\tau\neq\sigmaitalic_τ ≠ italic_σ, then K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) and K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) are locally isomorphic at z𝑧\displaystyle zitalic_z.

Now we want to refine our description of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ).Again, we may think of L𝐿\displaystyle Litalic_L and σL𝜎𝐿\displaystyle\sigma Litalic_σ italic_L as vectors with entries in 𝒪𝒱subscript𝒪𝒱\displaystyle\mathcal{O}_{\mathcal{V}}caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT. Then, there is a (pn)×(pr)𝑝𝑛𝑝𝑟\displaystyle(p-n)\times(p-r)( italic_p - italic_n ) × ( italic_p - italic_r ) matrix αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT, with entries in 𝒪𝒱subscript𝒪𝒱\displaystyle\mathcal{O}_{\mathcal{V}}caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT, such that

σ1LL=αLσσ.superscript𝜎1𝐿𝐿superscriptsubscript𝛼𝐿𝜎subscript𝜎\displaystyle\sigma^{-1}L-L=\alpha_{L}^{\sigma}\cdot\ell_{\sigma}.italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L - italic_L = italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT .

Also, consider the involution ι:𝒱×𝒱𝒱×𝒱:𝜄𝒱𝒱𝒱𝒱\displaystyle\iota\colon\mathcal{V}\times\mathcal{V}\to\mathcal{V}\times%\mathcal{V}italic_ι : caligraphic_V × caligraphic_V → caligraphic_V × caligraphic_V, given by (u,u)(u,u)maps-to𝑢superscript𝑢superscript𝑢𝑢\displaystyle(u,u^{\prime})\mapsto(u^{\prime},u)( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ↦ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_u ). This mapping lifts to an involution ι~:B2(𝒱)B2(𝒱):~𝜄superscript𝐵2𝒱superscript𝐵2𝒱\displaystyle\tilde{\iota}\colon B^{2}(\mathcal{V})\to B^{2}(\mathcal{V})over~ start_ARG italic_ι end_ARG : italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_V ) → italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_V ) taking K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) onto itself.

Proposition 4.6.

With the above notations, the branch K2σ(f)subscriptsuperscript𝐾𝜎2𝑓\displaystyle K^{\sigma}_{2}(f)italic_K start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) is the complex space

K2σ(f)={(u,σu,v)K2σL(u)=0,αLσ(u)σ(v)=0}superscriptsubscript𝐾2𝜎𝑓conditional-set𝑢𝜎𝑢𝑣subscriptsuperscript𝐾𝜎2formulae-sequence𝐿𝑢0superscriptsubscript𝛼𝐿𝜎𝑢subscript𝜎𝑣0\displaystyle K_{2}^{\sigma}(f)=\{(u,\sigma u,v)\in K^{\sigma}_{2}\mid L(u)=0,%\alpha_{L}^{\sigma}(u)\cdot\ell_{\sigma}(v)=0\}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = { ( italic_u , italic_σ italic_u , italic_v ) ∈ italic_K start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∣ italic_L ( italic_u ) = 0 , italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_v ) = 0 }

and it satisfies the following properties:

  1. (1)

    The dimension of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is at least 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) has dimension 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p, then it is locally a complete intersection.

  2. (2)

    The blowup mapping B2(𝒴)𝒴×𝒴subscript𝐵2𝒴𝒴𝒴\displaystyle B_{2}(\mathcal{Y})\to\mathcal{Y}\times\mathcal{Y}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) → caligraphic_Y × caligraphic_Y takes K2σ(f)Esuperscriptsubscript𝐾2𝜎𝑓𝐸\displaystyle K_{2}^{\sigma}(f)\setminus Eitalic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ∖ italic_E isomorphically to the space

    {(u,σu)u(𝒴σ1𝒴)Fixσ}.conditional-set𝑢𝜎𝑢𝑢𝒴superscript𝜎1𝒴Fix𝜎\displaystyle\{(u,\sigma u)\mid u\in(\mathcal{Y}\cap\sigma^{-1}\mathcal{Y})%\setminus\operatorname{Fix}\sigma\}.{ ( italic_u , italic_σ italic_u ) ∣ italic_u ∈ ( caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y ) ∖ roman_Fix italic_σ } .
  3. (3)

    The involution ι~~𝜄\displaystyle\tilde{\iota}over~ start_ARG italic_ι end_ARG takes K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) isomorphically to K2(σ1)(f)superscriptsubscript𝐾2superscript𝜎1𝑓\displaystyle K_{2}^{(\sigma^{-1})}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) end_POSTSUPERSCRIPT ( italic_f ).

Proof.

The space in question is defined as K2σ(f)=B2(𝒴)K2σsuperscriptsubscript𝐾2𝜎𝑓superscript𝐵2𝒴superscriptsubscript𝐾2𝜎\displaystyle K_{2}^{\sigma}(f)=B^{2}(\mathcal{Y})\cap K_{2}^{\sigma}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_Y ) ∩ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT. Consider the (pn)×p𝑝𝑛𝑝\displaystyle(p-n)\times p( italic_p - italic_n ) × italic_p matrix αLsubscript𝛼𝐿\displaystyle\alpha_{L}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, with entries in 𝒪𝒱×𝒱subscript𝒪𝒱𝒱\displaystyle\mathcal{O}_{\mathcal{V}\times\mathcal{V}}caligraphic_O start_POSTSUBSCRIPT caligraphic_V × caligraphic_V end_POSTSUBSCRIPT, satisfying L(u)L(u)=αL(u,u)(uu)𝐿superscript𝑢𝐿𝑢subscript𝛼𝐿𝑢superscript𝑢superscript𝑢𝑢\displaystyle L(u^{\prime})-L(u)=\alpha_{L}(u,u^{\prime})\cdot(u^{\prime}-u)italic_L ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_L ( italic_u ) = italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⋅ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u ). This allows to describe B2(𝒴)subscript𝐵2𝒴\displaystyle B_{2}(\mathcal{Y})italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) inside B2(𝒱)subscript𝐵2𝒱\displaystyle B_{2}(\mathcal{V})italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_V ) as

B2(𝒴)={(u,u,v)B2(𝒱)L(u)=0,αL(u,u)v=0}.subscript𝐵2𝒴conditional-set𝑢superscript𝑢𝑣subscript𝐵2𝒱formulae-sequence𝐿𝑢0subscript𝛼𝐿𝑢superscript𝑢𝑣0\displaystyle B_{2}(\mathcal{Y})=\{(u,u^{\prime},v)\in B_{2}(\mathcal{V})\mid L%(u)=0,\alpha_{L}(u,u^{\prime})\cdot v=0\}.italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) = { ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_v ) ∈ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_V ) ∣ italic_L ( italic_u ) = 0 , italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⋅ italic_v = 0 } .

To see this, it suffices to check that the space on the right hand side of the equality is the strict transform of 𝒴×𝒴𝒴𝒴\displaystyle\mathcal{Y}\times\mathcal{Y}caligraphic_Y × caligraphic_Y in B2(𝒱)subscript𝐵2𝒱\displaystyle B_{2}(\mathcal{V})italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_V ). This in turn is true because this space has dimension 2n2𝑛\displaystyle 2n2 italic_n, making it a complete intersection by counting equations, and it is isomorphic to 𝒴×𝒴𝒴𝒴\displaystyle\mathcal{Y}\times\mathcal{Y}caligraphic_Y × caligraphic_Y away from E𝐸\displaystyle Eitalic_E, while the equations prevent it from having irreducible components contained in E𝐸\displaystyle Eitalic_E. Now, to finish the description of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) in the statement, it suffices to show that, for points (u,σu,v)K2σ𝑢𝜎𝑢𝑣superscriptsubscript𝐾2𝜎\displaystyle(u,\sigma u,v)\in K_{2}^{\sigma}( italic_u , italic_σ italic_u , italic_v ) ∈ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT, the conditions αL(u,σu)v=0subscript𝛼𝐿𝑢𝜎𝑢𝑣0\displaystyle\alpha_{L}(u,\sigma u)\cdot v=0italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_u , italic_σ italic_u ) ⋅ italic_v = 0 and αLσ(u)σ(v)=0superscriptsubscript𝛼𝐿𝜎𝑢subscript𝜎𝑣0\displaystyle\alpha_{L}^{\sigma}(u)\cdot\ell_{\sigma}(v)=0italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_v ) = 0 are equivalent. For simplicity, we may identify 𝒱=FixσFixσ𝒱direct-sumFixsuperscript𝜎bottomFix𝜎\displaystyle\mathcal{V}=\operatorname{Fix}\sigma^{\bot}\oplus\operatorname{%Fix}\sigmacaligraphic_V = roman_Fix italic_σ start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ⊕ roman_Fix italic_σ, so that any vector is of the form u=(u1,u2)𝑢subscript𝑢1subscript𝑢2\displaystyle u=(u_{1},u_{2})italic_u = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), with σ(u)=u1subscript𝜎𝑢subscript𝑢1\displaystyle\ell_{\sigma}(u)=u_{1}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_u ) = italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and σ(u)=u2superscriptsubscript𝜎bottom𝑢subscript𝑢2\displaystyle\ell_{\sigma}^{\bot}(u)=u_{2}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ( italic_u ) = italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Any point (u,σu,v)K2σ𝑢𝜎𝑢𝑣superscriptsubscript𝐾2𝜎\displaystyle(u,\sigma u,v)\in K_{2}^{\sigma}( italic_u , italic_σ italic_u , italic_v ) ∈ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT satisfies σ(v)=0superscriptsubscript𝜎bottom𝑣0\displaystyle\ell_{\sigma}^{\bot}(v)=0roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ( italic_v ) = 0, which means that the equation αL(u,σu)v=0subscript𝛼𝐿𝑢𝜎𝑢𝑣0\displaystyle\alpha_{L}(u,\sigma u)\cdot v=0italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_u , italic_σ italic_u ) ⋅ italic_v = 0 has the form

(A(u,σu)B(u,σu))(v10)=0.𝐴𝑢𝜎𝑢𝐵𝑢𝜎𝑢subscript𝑣1missing-subexpression00\displaystyle\left(\begin{array}[]{@{}c|c@{}}A(u,\sigma u)&B(u,\sigma u)\end{%array}\right)\left(\begin{array}[]{c}v_{1}\\\hline\cr 0\end{array}\right)=0.( start_ARRAY start_ROW start_CELL italic_A ( italic_u , italic_σ italic_u ) end_CELL start_CELL italic_B ( italic_u , italic_σ italic_u ) end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARRAY ) = 0 .

Taking αLσ(u)=A(u,σu)superscriptsubscript𝛼𝐿𝜎𝑢𝐴𝑢𝜎𝑢\displaystyle\alpha_{L}^{\sigma}(u)=A(u,\sigma u)italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) = italic_A ( italic_u , italic_σ italic_u ), the equation αLσ(u)σ(v)=0superscriptsubscript𝛼𝐿𝜎𝑢subscript𝜎𝑣0\displaystyle\alpha_{L}^{\sigma}(u)\cdot\ell_{\sigma}(v)=0italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_v ) = 0 is equivalent to the one above.

Item (1) is an easy equation counting: K2σsuperscriptsubscript𝐾2𝜎\displaystyle K_{2}^{\sigma}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT is a p𝑝\displaystyle pitalic_p-dimensional manifold, on which we impose 2(pn)2𝑝𝑛\displaystyle 2(p-n)2 ( italic_p - italic_n ) equations. To see item (2), observe that (u,σu)𝑢𝜎𝑢\displaystyle(u,\sigma u)( italic_u , italic_σ italic_u ) is contained in E𝐸\displaystyle Eitalic_E if and only if uFixσ𝑢𝐹𝑖𝑥𝜎\displaystyle u\in Fix\sigmaitalic_u ∈ italic_F italic_i italic_x italic_σ, and that away from E𝐸\displaystyle Eitalic_E, the equations αLσ(u)σ(v)=0superscriptsubscript𝛼𝐿𝜎𝑢subscript𝜎𝑣0\displaystyle\alpha_{L}^{\sigma}(u)\cdot\ell_{\sigma}(v)=0italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_v ) = 0 and L(u)L(u)=0𝐿superscript𝑢𝐿𝑢0\displaystyle L(u^{\prime})-L(u)=0italic_L ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_L ( italic_u ) = 0 are equivalent. For item (3), we already know that ι~~𝜄\displaystyle\tilde{\iota}over~ start_ARG italic_ι end_ARG is an automorphism on K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) and, since it has the form (u,σu,v)(σu,u,v)maps-to𝑢𝜎𝑢𝑣𝜎𝑢𝑢𝑣\displaystyle(u,\sigma u,v)\mapsto(\sigma u,u,v)( italic_u , italic_σ italic_u , italic_v ) ↦ ( italic_σ italic_u , italic_u , italic_v ), it must take K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) to K2(σ1)(f)superscriptsubscript𝐾2superscript𝜎1𝑓\displaystyle K_{2}^{(\sigma^{-1})}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) end_POSTSUPERSCRIPT ( italic_f ). This must happen isomorphically, since otherwise ι~~𝜄\displaystyle\tilde{\iota}over~ start_ARG italic_ι end_ARG would fail to be an automorphism.∎

Example 4.7.

Consider the map-germ

f(d1,,d5):(x,y,z)(xd1,yd2,zd3,(x+y+z)d4,(xy+2z)d5),:superscript𝑓subscript𝑑1subscript𝑑5maps-to𝑥𝑦𝑧superscript𝑥subscript𝑑1superscript𝑦subscript𝑑2superscript𝑧subscript𝑑3superscript𝑥𝑦𝑧subscript𝑑4superscript𝑥𝑦2𝑧subscript𝑑5\displaystyle f^{(d_{1},\dots,d_{5})}\colon(x,y,z)\mapsto(x^{d_{1}},y^{d_{2}},%z^{d_{3}},(x+y+z)^{d_{4}},(x-y+2z)^{d_{5}}),italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT : ( italic_x , italic_y , italic_z ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x + italic_y + italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x - italic_y + 2 italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ,

from Example 2.5. The equations of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y are L=(u1+u2+u3u4,u1u2+2u3u5)=0𝐿subscript𝑢1subscript𝑢2subscript𝑢3subscript𝑢4subscript𝑢1subscript𝑢22subscript𝑢3subscript𝑢50\displaystyle L=(u_{1}+u_{2}+u_{3}-u_{4},u_{1}-u_{2}+2u_{3}-u_{5})=0italic_L = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 2 italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) = 0.To illustrate the calculation of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), take, for instance, the elements of the form σi=(a1,,ai,0,,0)subscript𝜎𝑖subscript𝑎1subscript𝑎𝑖00\displaystyle\sigma_{i}=(a_{1},\dots,a_{i},0,\dots,0)italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , 0 , … , 0 ), i=1,,5𝑖15\displaystyle i=1,\dots,5italic_i = 1 , … , 5, with 0<ai<di0subscript𝑎𝑖subscript𝑑𝑖\displaystyle 0<a_{i}<d_{i}0 < italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (see Example 2.1 for notation). The pointwise fixed spaces are given by the vanishing of σi(u)=(u1,,ui)subscriptsubscript𝜎𝑖𝑢subscript𝑢1subscript𝑢𝑖\displaystyle\ell_{\sigma_{i}}(u)=(u_{1},\dots,u_{i})roman_ℓ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u ) = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). From the equations σ1LL=αLσσsuperscript𝜎1𝐿𝐿superscriptsubscript𝛼𝐿𝜎subscript𝜎\displaystyle\sigma^{-1}L-L=\alpha_{L}^{\sigma}\cdot\ell_{\sigma}italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L - italic_L = italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT one concludes thatαLσisuperscriptsubscript𝛼𝐿subscript𝜎𝑖\displaystyle\alpha_{L}^{\sigma_{i}}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the matrix defined by the first i𝑖\displaystyle iitalic_i columns of

αLσ5=(ξ1a11ξ2a21ξ3a311(ξ4a41)0ξ1a111(ξ2a21)2(ξ3a31)01(ξ5a51))superscriptsubscript𝛼𝐿subscript𝜎5superscriptsubscript𝜉1subscript𝑎11superscriptsubscript𝜉2subscript𝑎21superscriptsubscript𝜉3subscript𝑎311superscriptsubscript𝜉4subscript𝑎410superscriptsubscript𝜉1subscript𝑎111superscriptsubscript𝜉2subscript𝑎212superscriptsubscript𝜉3subscript𝑎3101superscriptsubscript𝜉5subscript𝑎51\displaystyle\alpha_{L}^{\sigma_{5}}=\left(\begin{array}[]{ccccc}\xi_{1}^{a_{1%}}-1&\xi_{2}^{a_{2}}-1&\xi_{3}^{a_{3}}-1&-1(\xi_{4}^{a_{4}}-1)&0\\\xi_{1}^{a_{1}}-1&-1(\xi_{2}^{a_{2}}-1)&2(\xi_{3}^{a_{3}}-1)&0&-1(\xi_{5}^{a_{%5}}-1)\end{array}\right)italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 end_CELL start_CELL italic_ξ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 end_CELL start_CELL italic_ξ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 end_CELL start_CELL - 1 ( italic_ξ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 ) end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 end_CELL start_CELL - 1 ( italic_ξ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 ) end_CELL start_CELL 2 ( italic_ξ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 ) end_CELL start_CELL 0 end_CELL start_CELL - 1 ( italic_ξ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 ) end_CELL end_ROW end_ARRAY )

Since, for i=1,2𝑖12\displaystyle i=1,2italic_i = 1 , 2, αLσisuperscriptsubscript𝛼𝐿subscript𝜎𝑖\displaystyle\alpha_{L}^{\sigma_{i}}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is injective, the equation αLσiσi(v)=0superscriptsubscript𝛼𝐿subscript𝜎𝑖subscriptsubscript𝜎𝑖𝑣0\displaystyle\alpha_{L}^{\sigma_{i}}\cdot\ell_{\sigma_{i}}(v)=0italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ⋅ roman_ℓ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_v ) = 0 forces σi(v)=0subscriptsubscript𝜎𝑖𝑣0\displaystyle\ell_{\sigma_{i}}(v)=0roman_ℓ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_v ) = 0. This, added to the condition σi(v)=0superscriptsubscriptsubscript𝜎𝑖bottom𝑣0\displaystyle\ell_{\sigma_{i}}^{\bot}(v)=0roman_ℓ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ( italic_v ) = 0 for points in (u,σu,v)K2σi𝑢𝜎𝑢𝑣superscriptsubscript𝐾2subscript𝜎𝑖\displaystyle(u,\sigma u,v)\in K_{2}^{\sigma_{i}}( italic_u , italic_σ italic_u , italic_v ) ∈ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, forces v=0𝑣0\displaystyle v=0italic_v = 0 and, since a point vp1𝑣superscript𝑝1\displaystyle v\in\mathbb{P}^{p-1}italic_v ∈ blackboard_P start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT cannot have all its coordinates equal to zero, we conclude K2σi(f)=superscriptsubscript𝐾2subscript𝜎𝑖𝑓\displaystyle K_{2}^{\sigma_{i}}(f)=\emptysetitalic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) = ∅.K2σ3(f)superscriptsubscript𝐾2subscript𝜎3𝑓\displaystyle K_{2}^{\sigma_{3}}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) is a line, with no component on the exceptional divisor, and it is a complete intersection. K2σ4(f)superscriptsubscript𝐾2subscript𝜎4𝑓\displaystyle K_{2}^{\sigma_{4}}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) is a line, with an irreducible component on the exceptional divisor.K2σ5(f)superscriptsubscript𝐾2subscript𝜎5𝑓\displaystyle K_{2}^{\sigma_{5}}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) is the union of a line and a 2-dimensional component lying on the exceptional divisor. This branch is not a complete intersection (indeed it is not even Cohen Macaulay).

Decomposition of the double point space D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f )

Now we study a different double point space. As a set, D2(f)𝒱×𝒱superscript𝐷2𝑓𝒱𝒱\displaystyle D^{2}(f)\subseteq\mathcal{V}\times\mathcal{V}italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) ⊆ caligraphic_V × caligraphic_V is just the projection of K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ). As a complex space, this space was introduced in [10]. The results for which we give no proof can be found in [14]. Let f:𝒴𝒵:𝑓𝒴𝒵\displaystyle f\colon\mathcal{Y}\to\mathcal{Z}italic_f : caligraphic_Y → caligraphic_Z be a holomorphic mapping between complex manifolds, as in the previous section. We define

D2(f)=V((f×f)(IΔ)+In(αf)),superscript𝐷2𝑓𝑉superscript𝑓𝑓subscript𝐼Δsubscript𝐼𝑛subscript𝛼𝑓\displaystyle D^{2}(f)=V((f\times f)^{*}(I_{\Delta})+I_{n}(\alpha_{f})),italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = italic_V ( ( italic_f × italic_f ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_I start_POSTSUBSCRIPT roman_Δ end_POSTSUBSCRIPT ) + italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) ) ,

where IΔsubscript𝐼Δ\displaystyle I_{\Delta}italic_I start_POSTSUBSCRIPT roman_Δ end_POSTSUBSCRIPT stands for ideal of the diagonal Δ𝒵Δ𝒵\displaystyle\Delta\mathcal{Z}roman_Δ caligraphic_Z and In(αf)subscript𝐼𝑛subscript𝛼𝑓\displaystyle I_{n}(\alpha_{f})italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) is the ideal generated by the n×n𝑛𝑛\displaystyle n\times nitalic_n × italic_n minors of αfsubscript𝛼𝑓\displaystyle\alpha_{f}italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT (see [10, Proposition 3.1] for the independence of αfsubscript𝛼𝑓\displaystyle\alpha_{f}italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT). As it is the case with K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ), the space D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) has a nice analytic structure whenever it has the right dimension.

Proposition 4.8.

The dimension of D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) is at least 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) has dimension 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p, then it is a Cohen-Macaulay space.

As we mentioned, set theoretically, D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) is the projection of K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ), that is,

D2(f)={(u,u)𝒴×𝒴uu,f(u)=f(u)}{(u,u)ΔXrk(dfu)<n}.superscript𝐷2𝑓conditional-set𝑢superscript𝑢𝒴𝒴formulae-sequencesuperscript𝑢𝑢𝑓superscript𝑢𝑓𝑢conditional-set𝑢𝑢Δ𝑋rkdsubscript𝑓𝑢𝑛\displaystyle D^{2}(f)=\{(u,u^{\prime})\in\mathcal{Y}\times\mathcal{Y}\mid u^{%\prime}\neq u,f(u^{\prime})=f(u)\}\cup\{(u,u)\in\Delta X\mid\operatorname{rk}(%\operatorname{d}\!f_{u})<n\}.italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = { ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ caligraphic_Y × caligraphic_Y ∣ italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≠ italic_u , italic_f ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_f ( italic_u ) } ∪ { ( italic_u , italic_u ) ∈ roman_Δ italic_X ∣ roman_rk ( roman_d italic_f start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) < italic_n } .

Going back to the reflection mapping setting, by letting D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) be the image of K2σ(f)subscriptsuperscript𝐾𝜎2𝑓\displaystyle K^{\sigma}_{2}(f)italic_K start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) in 𝒴×𝒴𝒴𝒴\displaystyle\mathcal{Y}\times\mathcal{Y}caligraphic_Y × caligraphic_Y, we obtain a set-theoretical decomposition

D2(f)=σW{1}D2σ(f),superscript𝐷2𝑓subscript𝜎𝑊1superscriptsubscript𝐷2𝜎𝑓\displaystyle D^{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}D_{2}^{\sigma}(f),italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ,

and clearly D2σ(f)={(u,σu)𝒱×𝒱L(u)=L(σu)=0,kerαLσ(u)0}.superscriptsubscript𝐷2𝜎𝑓conditional-set𝑢𝜎𝑢𝒱𝒱formulae-sequence𝐿𝑢𝐿𝜎𝑢0kernelsuperscriptsubscript𝛼𝐿𝜎𝑢0\displaystyle D_{2}^{\sigma}(f)=\{(u,\sigma u)\in\mathcal{V}\times\mathcal{V}%\mid L(u)=L(\sigma u)=0,\ker\alpha_{L}^{\sigma}(u)\neq 0\}.italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = { ( italic_u , italic_σ italic_u ) ∈ caligraphic_V × caligraphic_V ∣ italic_L ( italic_u ) = italic_L ( italic_σ italic_u ) = 0 , roman_ker italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ≠ 0 } . We may improve this description, by giving D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) an adequate analytic structure:

Definition 4.9.

Let σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 } and r=dim(Fixσ)𝑟dimFix𝜎\displaystyle r=\operatorname{dim}(\operatorname{Fix}\sigma)italic_r = roman_dim ( roman_Fix italic_σ ).If rn𝑟𝑛\displaystyle r\geq nitalic_r ≥ italic_n, then let

D2σ(f)={(u,σu)𝒱×𝒱L(u)=L(σu)=0,Ipr(αLσ(u))=0},superscriptsubscript𝐷2𝜎𝑓conditional-set𝑢𝜎𝑢𝒱𝒱formulae-sequence𝐿𝑢𝐿𝜎𝑢0subscript𝐼𝑝𝑟superscriptsubscript𝛼𝐿𝜎𝑢0\displaystyle D_{2}^{\sigma}(f)=\{(u,\sigma u)\in\mathcal{V}\times\mathcal{V}%\mid L(u)=L(\sigma u)=0,I_{p-r}(\alpha_{L}^{\sigma}(u))=0\},italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = { ( italic_u , italic_σ italic_u ) ∈ caligraphic_V × caligraphic_V ∣ italic_L ( italic_u ) = italic_L ( italic_σ italic_u ) = 0 , italic_I start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ) = 0 } ,

where Ipr(αLσ)subscript𝐼𝑝𝑟superscriptsubscript𝛼𝐿𝜎\displaystyle I_{p-r}(\alpha_{L}^{\sigma})italic_I start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ) are the (pr)×(pr)𝑝𝑟𝑝𝑟\displaystyle(p-r)\times(p-r)( italic_p - italic_r ) × ( italic_p - italic_r ) minors of αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT. If r<n𝑟𝑛\displaystyle r<nitalic_r < italic_n, then let

D2σ(f)={(u,σu)𝒱×𝒱L(u)=L(σu)=0}.superscriptsubscript𝐷2𝜎𝑓conditional-set𝑢𝜎𝑢𝒱𝒱𝐿𝑢𝐿𝜎𝑢0\displaystyle D_{2}^{\sigma}(f)=\{(u,\sigma u)\in\mathcal{V}\times\mathcal{V}%\mid L(u)=L(\sigma u)=0\}.italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = { ( italic_u , italic_σ italic_u ) ∈ caligraphic_V × caligraphic_V ∣ italic_L ( italic_u ) = italic_L ( italic_σ italic_u ) = 0 } .

The proof that this definition is independent of the matrix αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT is, mutatis mutandis, the one of [10, Proposition 3.1].

Proposition 4.10.

For every σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }, the complex space D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) defined above is, as a set, the image of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) on 𝒴×𝒴𝒴𝒴\displaystyle\mathcal{Y}\times\mathcal{Y}caligraphic_Y × caligraphic_Y, and it satisfies the following properties:

  1. (1)

    The dimension of D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is at least 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If dimD2σ(f)=2npdimsuperscriptsubscript𝐷2𝜎𝑓2𝑛𝑝\displaystyle\operatorname{dim}D_{2}^{\sigma}(f)=2n-proman_dim italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = 2 italic_n - italic_p, then D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is Cohen-Macaulay. If furthermore σ𝜎\displaystyle\sigmaitalic_σ is a reflection or dimFixσ<ndimFix𝜎𝑛\displaystyle\operatorname{dim}\operatorname{Fix}\sigma<nroman_dim roman_Fix italic_σ < italic_n, then D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is locally a complete intersection.

  2. (2)

    Away from Δ𝒴Δ𝒴\displaystyle\Delta\mathcal{Y}roman_Δ caligraphic_Y, we have an equality of complex spaces

    D2σ(f)Δ𝒴={(u,σu)u(𝒴σ1𝒴)Fixσ}.superscriptsubscript𝐷2𝜎𝑓Δ𝒴conditional-set𝑢𝜎𝑢𝑢𝒴superscript𝜎1𝒴Fix𝜎\displaystyle D_{2}^{\sigma}(f)\setminus\Delta\mathcal{Y}=\{(u,\sigma u)\mid u%\in(\mathcal{Y}\cap\sigma^{-1}\mathcal{Y})\setminus\operatorname{Fix}\sigma\}.italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ∖ roman_Δ caligraphic_Y = { ( italic_u , italic_σ italic_u ) ∣ italic_u ∈ ( caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y ) ∖ roman_Fix italic_σ } .
  3. (3)

    Let (u,σu)D2σ(f)𝑢𝜎𝑢superscriptsubscript𝐷2𝜎𝑓\displaystyle(u,\sigma u)\in D_{2}^{\sigma}(f)( italic_u , italic_σ italic_u ) ∈ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), assume that uFixσ𝑢Fix𝜎\displaystyle u\notin\operatorname{Fix}\sigmaitalic_u ∉ roman_Fix italic_σ and that (u,σu)D2τ(f)𝑢𝜎𝑢superscriptsubscript𝐷2𝜏𝑓\displaystyle(u,\sigma u)\notin D_{2}^{\tau}(f)( italic_u , italic_σ italic_u ) ∉ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( italic_f ), for all τσ𝜏𝜎\displaystyle\tau\neq\sigmaitalic_τ ≠ italic_σ. Then, D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) are locally isomorphic at (u,σu)𝑢𝜎𝑢\displaystyle(u,\sigma u)( italic_u , italic_σ italic_u ).

  4. (4)

    The involution ι𝜄\displaystyle\iotaitalic_ι takes D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) isomorphically to D2(σ1)(f)superscriptsubscript𝐷2superscript𝜎1𝑓\displaystyle D_{2}^{(\sigma^{-1})}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) end_POSTSUPERSCRIPT ( italic_f ).

Proof.

We know that the image of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) in 𝒴×𝒴𝒴𝒴\displaystyle\mathcal{Y}\times\mathcal{Y}caligraphic_Y × caligraphic_Y is the set of pairs (u,σu)𝒴×𝒴𝑢𝜎𝑢𝒴𝒴\displaystyle(u,\sigma u)\in\mathcal{Y}\times\mathcal{Y}( italic_u , italic_σ italic_u ) ∈ caligraphic_Y × caligraphic_Y, such that kerαLσ(u)0kernelsuperscriptsubscript𝛼𝐿𝜎𝑢0\displaystyle\ker\alpha_{L}^{\sigma}(u)\neq 0roman_ker italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ≠ 0. Letting r=dimFixσ𝑟dimFix𝜎\displaystyle r=\operatorname{dim}\operatorname{Fix}\sigmaitalic_r = roman_dim roman_Fix italic_σ, the matrix αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT has size (pn)×(pr)𝑝𝑛𝑝𝑟\displaystyle(p-n)\times(p-r)( italic_p - italic_n ) × ( italic_p - italic_r ). Therefore, αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT must have non-trivial kernel automatically if r<n𝑟𝑛\displaystyle r<nitalic_r < italic_n. Whenever rn𝑟𝑛\displaystyle r\geq nitalic_r ≥ italic_n, the conditions kerαLσ(u)0kernelsuperscriptsubscript𝛼𝐿𝜎𝑢0\displaystyle\ker\alpha_{L}^{\sigma}(u)\neq 0roman_ker italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ≠ 0 and Ipr(αLσ(u))=0subscript𝐼𝑝𝑟superscriptsubscript𝛼𝐿𝜎𝑢0\displaystyle I_{p-r}(\alpha_{L}^{\sigma}(u))=0italic_I start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ) = 0 are equivalent. This shows D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) to be the image of K2σ(f)superscriptsubscript𝐾2𝜎𝑓\displaystyle K_{2}^{\sigma}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), as a set.

Now we prove item (1). If dimFixσ<ndimFix𝜎𝑛\displaystyle\operatorname{dim}\operatorname{Fix}\sigma<nroman_dim roman_Fix italic_σ < italic_n then D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is defined by the 2(pn)2𝑝𝑛\displaystyle 2(p-n)2 ( italic_p - italic_n ) equations L(u)=L(σu)=0𝐿𝑢𝐿𝜎𝑢0\displaystyle L(u)=L(\sigma u)=0italic_L ( italic_u ) = italic_L ( italic_σ italic_u ) = 0 on the p𝑝\displaystyle pitalic_p-dimensional manifold {(u,σu)u𝒱}conditional-set𝑢𝜎𝑢𝑢𝒱\displaystyle\{(u,\sigma u)\mid u\in\mathcal{V}\}{ ( italic_u , italic_σ italic_u ) ∣ italic_u ∈ caligraphic_V }, hence it is a complete intersection if it has dimension 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If σ𝜎\displaystyle\sigmaitalic_σ is a reflection, then σsubscript𝜎\displaystyle\ell_{\sigma}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT consists of a single entry and, then, we may compute αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT just by dividing the entries of L𝐿\displaystyle Litalic_L by σsubscript𝜎\displaystyle\ell_{\sigma}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, that is,

αLσ=(σ1L1L1σ,,σ1LpnLpnσ)superscriptsubscript𝛼𝐿𝜎superscript𝜎1subscript𝐿1subscript𝐿1subscript𝜎superscript𝜎1subscript𝐿𝑝𝑛subscript𝐿𝑝𝑛subscript𝜎\displaystyle\alpha_{L}^{\sigma}=\left(\frac{\sigma^{-1}L_{1}-L_{1}}{\ell_{%\sigma}},\dots,\frac{\sigma^{-1}L_{p-n}-L_{p-n}}{\ell_{\sigma}}\right)italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT = ( divide start_ARG italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG , … , divide start_ARG italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT end_ARG start_ARG roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG )

Now Ipr(αLσ)subscript𝐼𝑝𝑟superscriptsubscript𝛼𝐿𝜎\displaystyle I_{p-r}(\alpha_{L}^{\sigma})italic_I start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ) is generated by the entries of αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT. In this case, modulo the entries of L𝐿\displaystyle Litalic_L, the entries of σ1Lsuperscript𝜎1𝐿\displaystyle\sigma^{-1}Litalic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L are generated by the entries of Ipr(αLσ)subscript𝐼𝑝𝑟superscriptsubscript𝛼𝐿𝜎\displaystyle I_{p-r}(\alpha_{L}^{\sigma})italic_I start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ), and can be discarded as generators of the ideal of D2σsuperscriptsubscript𝐷2𝜎\displaystyle D_{2}^{\sigma}italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT. Just as in the case of dimFixσ<ndimFix𝜎𝑛\displaystyle\operatorname{dim}\operatorname{Fix}\sigma<nroman_dim roman_Fix italic_σ < italic_n, now D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is defined by 2(pn)2𝑝𝑛\displaystyle 2(p-n)2 ( italic_p - italic_n ) equations and it is a complete intersection if it has dimension 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If dimFixσndimFix𝜎𝑛\displaystyle\operatorname{dim}\operatorname{Fix}\sigma\geq nroman_dim roman_Fix italic_σ ≥ italic_n, the fact that D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) is a Cohen-Macaulay space whenever it has dimension 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p is a direct application of [5, Thm 2.7, Lemma 2.3].

Item (2) is obvious if r<n𝑟𝑛\displaystyle r<nitalic_r < italic_n. In the case of rn𝑟𝑛\displaystyle r\geq nitalic_r ≥ italic_n we need to show that, locally on a point (u,σu)D2σ(f)Δ𝒴𝑢𝜎𝑢superscriptsubscript𝐷2𝜎𝑓Δ𝒴\displaystyle(u,\sigma u)\in D_{2}^{\sigma}(f)\setminus\Delta\mathcal{Y}( italic_u , italic_σ italic_u ) ∈ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ∖ roman_Δ caligraphic_Y, the pr𝑝𝑟\displaystyle p-ritalic_p - italic_r minors ofαLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT are in the ideal generated by the entries of L𝐿\displaystyle Litalic_L and σ1Lsuperscript𝜎1𝐿\displaystyle\sigma^{-1}Litalic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L. Let A𝐴\displaystyle Aitalic_Abe the square submatrix obtained by picking the rows j1,,jprsubscript𝑗1subscript𝑗𝑝𝑟\displaystyle j_{1},\dots,j_{p-r}italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT of αLσsuperscriptsubscript𝛼𝐿𝜎\displaystyle\alpha_{L}^{\sigma}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT. Let b𝑏\displaystyle bitalic_b be the vector with entries σ1Lj1Lj1,,σ1LjprLjprsuperscript𝜎1subscript𝐿subscript𝑗1subscript𝐿subscript𝑗1superscript𝜎1subscript𝐿subscript𝑗𝑝𝑟subscript𝐿subscript𝑗𝑝𝑟\displaystyle\sigma^{-1}L_{j_{1}}-L_{j_{1}},\dots,\sigma^{-1}L_{j_{p-r}}-L_{j_%{p-r}}italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , … , italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Since uFixσ𝑢Fix𝜎\displaystyle u\notin\operatorname{Fix}\sigmaitalic_u ∉ roman_Fix italic_σ, there must be some i𝑖\displaystyle iitalic_i such that i(u)0subscript𝑖𝑢0\displaystyle\ell_{i}(u)\neq 0roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_u ) ≠ 0. LetAsuperscript𝐴\displaystyle A^{\prime}italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be the matrix obtained by substitution of the i𝑖\displaystyle iitalic_i-th column of A𝐴\displaystyle Aitalic_A by b𝑏\displaystyle bitalic_b. By Cramer’s Rule, we obtain |A|=|A|/i(u)𝐴superscript𝐴subscript𝑖𝑢\displaystyle|A|=|A^{\prime}|/\ell_{i}(u)| italic_A | = | italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | / roman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_u ). The claim follows from the fact that |A|superscript𝐴\displaystyle|A^{\prime}|| italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | is clearly in the ideal generated by the entries of L𝐿\displaystyle Litalic_L and σ1Lsuperscript𝜎1𝐿\displaystyle\sigma^{-1}Litalic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L.

Observe that item (2) can be restated as the fact that D2σ(f)Δ𝒴superscriptsubscript𝐷2𝜎𝑓Δ𝒴\displaystyle D_{2}^{\sigma}(f)\setminus\Delta\mathcal{Y}italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ∖ roman_Δ caligraphic_Y and K2σ(f)Esuperscriptsubscript𝐾2𝜎𝑓𝐸\displaystyle K_{2}^{\sigma}(f)\setminus Eitalic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ∖ italic_E are isomorphic. At the same time, D2(f)Δ𝒴superscript𝐷2𝑓Δ𝒴\displaystyle D^{2}(f)\setminus\Delta\mathcal{Y}italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) ∖ roman_Δ caligraphic_Y and K2(f)Esubscript𝐾2𝑓𝐸\displaystyle K_{2}(f)\setminus Eitalic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) ∖ italic_E are isomorphic (this is true because both spaces are isomorphic to (𝒴×𝒱𝒴)Δ𝒴subscript𝒱𝒴𝒴Δ𝒴\displaystyle(\mathcal{Y}\times_{\mathcal{V}}\mathcal{Y})\setminus\Delta%\mathcal{Y}( caligraphic_Y × start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT caligraphic_Y ) ∖ roman_Δ caligraphic_Y. This easy to see from the equations of D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and from the definition of K2(f)subscript𝐾2𝑓\displaystyle K_{2}(f)italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) given in [13]). From this point of view, item (3) is the same as item (2) from Proposition 4.6. Finally, item (4) is proven in the same way as item (3) from Proposition 4.6.∎

Example 4.11.

Consider the map-germ

f(d1,,d5):(x,y,z)(xd1,yd2,zd3,(x+y+z)d4,(xy+2z)d5),:superscript𝑓subscript𝑑1subscript𝑑5maps-to𝑥𝑦𝑧superscript𝑥subscript𝑑1superscript𝑦subscript𝑑2superscript𝑧subscript𝑑3superscript𝑥𝑦𝑧subscript𝑑4superscript𝑥𝑦2𝑧subscript𝑑5\displaystyle f^{(d_{1},\dots,d_{5})}\colon(x,y,z)\mapsto(x^{d_{1}},y^{d_{2}},%z^{d_{3}},(x+y+z)^{d_{4}},(x-y+2z)^{d_{5}}),italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT : ( italic_x , italic_y , italic_z ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x + italic_y + italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x - italic_y + 2 italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ,

from Example 4.7. With the notations that we used there, we obtainD2σ1(f)=D2σ2(f)=superscriptsubscript𝐷2subscript𝜎1𝑓superscriptsubscript𝐷2subscript𝜎2𝑓\displaystyle D_{2}^{\sigma_{1}}(f)=D_{2}^{\sigma_{2}}(f)=\emptysetitalic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) = italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) = ∅ because, in both cases, αLσisuperscriptsubscript𝛼𝐿subscript𝜎𝑖\displaystyle\alpha_{L}^{\sigma_{i}}italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT has maximal rank. On the other hand, for i=3,4,5𝑖345\displaystyle i=3,4,5italic_i = 3 , 4 , 5, dimFixσi<3dim𝐹𝑖𝑥subscript𝜎𝑖3\displaystyle\operatorname{dim}Fix\sigma_{i}<3roman_dim italic_F italic_i italic_x italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < 3, therefore

D2σi(f)={(y,σiy)L(y)=L(σiy)=0}.superscriptsubscript𝐷2subscript𝜎𝑖𝑓conditional-set𝑦subscript𝜎𝑖𝑦𝐿𝑦𝐿subscript𝜎𝑖𝑦0\displaystyle D_{2}^{\sigma_{i}}(f)=\{(y,\sigma_{i}y)\mid L(y)=L(\sigma_{i}y)=%0\}.italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f ) = { ( italic_y , italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_y ) ∣ italic_L ( italic_y ) = italic_L ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_y ) = 0 } .

This spaces must be lines, because their equations are linear and we know a priori that f(d1,,d5)superscript𝑓subscript𝑑1subscript𝑑5\displaystyle f^{(d_{1},\dots,d_{5})}italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT is 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite [17, Lemma 9.10 and Proposition 9.8], which forces the double point space to be a reduced curve.

Remark 4.12.

In the case of p=n+1𝑝𝑛1\displaystyle p=n+1italic_p = italic_n + 1, every branch D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) having dimension n1𝑛1\displaystyle n-1italic_n - 1 is locally a complete intersection. This is remarkable, since it is well known that there are germs (n,0)(n+1,0)superscript𝑛0superscript𝑛10\displaystyle(\mathbb{C}^{n},0)\to(\mathbb{\mathbb{C}}^{n+1},0)( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , 0 ) whose double point space D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) has dimension n1𝑛1\displaystyle n-1italic_n - 1 but is not complete intersection. Proposition 4.10 shows that, for reflection mappings 𝒴n𝒱n+1superscript𝒴𝑛superscript𝒱𝑛1\displaystyle\mathcal{Y}^{n}\to\mathcal{V}^{n+1}caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → caligraphic_V start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT, we can split D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) into the branches D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), and these branches are complete intersections.

Decomposition of the double point space D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f )

If f:𝒴𝒵:𝑓𝒴𝒵\displaystyle f\colon\mathcal{Y}\to\mathcal{Z}italic_f : caligraphic_Y → caligraphic_Z is a finite holomorphic mapping between complex manifolds (not necessarily a reflection mapping), then the mapping π:D2(f)𝒴:𝜋superscript𝐷2𝑓𝒴\displaystyle\pi\colon D^{2}(f)\to\mathcal{Y}italic_π : italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) → caligraphic_Y, given by (y,y)ymaps-to𝑦superscript𝑦𝑦\displaystyle(y,y^{\prime})\mapsto y( italic_y , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ↦ italic_y, is finite. The source double point space D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) is defined as the image of π𝜋\displaystyle\piitalic_π, that is,

D(f)=V(0(π𝒪D2(f))).𝐷𝑓𝑉subscript0subscript𝜋subscript𝒪superscript𝐷2𝑓\displaystyle D(f)=V(\mathcal{F}_{0}(\pi_{*}\mathcal{O}_{D^{2}(f)})).italic_D ( italic_f ) = italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) end_POSTSUBSCRIPT ) ) .

As a set, we have that

D(f)={u𝒴|f1(f(u))|>1}{u𝒴rk(dfu)<dim𝒴}.𝐷𝑓conditional-set𝑢𝒴superscript𝑓1𝑓𝑢1conditional-set𝑢𝒴rkdsubscript𝑓𝑢dim𝒴\displaystyle D(f)=\{u\in\mathcal{Y}\mid|f^{-1}(f(u))|>1\}\cup\{u\in\mathcal{Y%}\mid\operatorname{rk}(\operatorname{d}\!f_{u})<\operatorname{dim}\mathcal{Y}\}.italic_D ( italic_f ) = { italic_u ∈ caligraphic_Y ∣ | italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_f ( italic_u ) ) | > 1 } ∪ { italic_u ∈ caligraphic_Y ∣ roman_rk ( roman_d italic_f start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ) < roman_dim caligraphic_Y } .

Now come back to the reflection mapping setting. Since we have the set theoretical decomposition D2(f)=σD2σ(f)superscript𝐷2𝑓subscript𝜎superscriptsubscript𝐷2𝜎𝑓\displaystyle D^{2}(f)=\cup_{\sigma}D_{2}^{\sigma}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = ∪ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), then the set D(f)=π(D2(f))𝐷𝑓𝜋superscript𝐷2𝑓\displaystyle D(f)=\pi(D^{2}(f))italic_D ( italic_f ) = italic_π ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) ) must be the union of the sets π(D2σ(f))𝜋superscriptsubscript𝐷2𝜎𝑓\displaystyle\pi(D_{2}^{\sigma}(f))italic_π ( italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ).

Definition 4.13.

For any σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }, we define Dσ(f)=V(0(π𝒪D2σ(f)))subscript𝐷𝜎𝑓𝑉subscript0subscript𝜋subscript𝒪superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{\sigma}(f)=V(\mathcal{F}_{0}(\pi_{*}\mathcal{O}_{D_{2}^{%\sigma}(f)}))italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) = italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) end_POSTSUBSCRIPT ) ).

We obtain the set theoretical decomposition

D(f)=σW{1}Dσ(f).𝐷𝑓subscript𝜎𝑊1subscript𝐷𝜎𝑓\displaystyle D(f)=\bigcup_{\sigma\in W\setminus\{1\}}D_{\sigma}(f).italic_D ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) .

Since the equations u=σusuperscript𝑢𝜎𝑢\displaystyle u^{\prime}=\sigma uitalic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_σ italic_u are among the equations defining D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ), the spaces π(D2σ(f))𝜋superscriptsubscript𝐷2𝜎𝑓\displaystyle\pi(D_{2}^{\sigma}(f))italic_π ( italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) ) and D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) isomorphic. Hence the spaces Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) may be described equivalently as follows: Let r=dimFixσ𝑟dimFix𝜎\displaystyle r=\operatorname{dim}\operatorname{Fix}\sigmaitalic_r = roman_dim roman_Fix italic_σ. If rn𝑟𝑛\displaystyle r\geq nitalic_r ≥ italic_n, then

Dσ(f)={u𝒴σ1𝒴Ipr(αLσ(u))=0}.subscript𝐷𝜎𝑓conditional-set𝑢𝒴superscript𝜎1𝒴subscript𝐼𝑝𝑟superscriptsubscript𝛼𝐿𝜎𝑢0\displaystyle D_{\sigma}(f)=\{u\in\mathcal{Y}\cap\mathcal{\sigma}^{-1}\mathcal%{Y}\mid I_{p-r}(\alpha_{L}^{\sigma}(u))=0\}.italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) = { italic_u ∈ caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y ∣ italic_I start_POSTSUBSCRIPT italic_p - italic_r end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_u ) ) = 0 } .

If r<n𝑟𝑛\displaystyle r<nitalic_r < italic_n, then

Dσ(f)=𝒴σ1𝒴.subscript𝐷𝜎𝑓𝒴superscript𝜎1𝒴\displaystyle D_{\sigma}(f)=\mathcal{Y}\cap\mathcal{\sigma}^{-1}\mathcal{Y}.italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) = caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y .

As the spaces D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) and Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) are isomorphic, Proposition 4.10 can be recast as a result about Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ).

Proposition 4.14.

For every σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }, the complex space Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) satisfies the following properties:

  1. (1)

    The dimension of Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is at least 2np2𝑛𝑝\displaystyle 2n-p2 italic_n - italic_p. If dimDσ(f)=2npdimsubscript𝐷𝜎𝑓2𝑛𝑝\displaystyle\operatorname{dim}D_{\sigma}(f)=2n-proman_dim italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) = 2 italic_n - italic_p, then Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is Cohen-Macaulay. If furthermore σ𝜎\displaystyle\sigmaitalic_σ is a reflection or dimFixσ<ndimFix𝜎𝑛\displaystyle\operatorname{dim}\operatorname{Fix}\sigma<nroman_dim roman_Fix italic_σ < italic_n, then Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is locally a complete intersection.

  2. (2)

    As complex spaces, Dσ(f)Fixσ=(𝒴σ1𝒴)Fixσsubscript𝐷𝜎𝑓Fix𝜎𝒴superscript𝜎1𝒴Fix𝜎\displaystyle D_{\sigma}(f)\setminus\operatorname{Fix}\sigma=(\mathcal{Y}\cap%\sigma^{-1}\mathcal{Y})\setminus\operatorname{Fix}\sigmaitalic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∖ roman_Fix italic_σ = ( caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y ) ∖ roman_Fix italic_σ.

  3. (3)

    Let uDσ(f)Fixσ𝑢subscript𝐷𝜎𝑓Fix𝜎\displaystyle u\in D_{\sigma}(f)\setminus\operatorname{Fix}\sigmaitalic_u ∈ italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∖ roman_Fix italic_σ such that uD2τ(f)𝑢superscriptsubscript𝐷2𝜏𝑓\displaystyle u\notin D_{2}^{\tau}(f)italic_u ∉ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT ( italic_f ), for all τσ𝜏𝜎\displaystyle\tau\neq\sigmaitalic_τ ≠ italic_σ. Then, D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) and Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) are locally isomorphic at u𝑢\displaystyle uitalic_u.

  4. (4)

    Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is isomorphic to Dσ1(f)subscript𝐷superscript𝜎1𝑓\displaystyle D_{\sigma^{-1}}(f)italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_f ) via σ𝜎\displaystyle\sigmaitalic_σ.

If there is no risk of confusion, it is common to write D𝐷\displaystyle Ditalic_D instead of D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ). Similarly, we may sometimes write Dσsubscript𝐷𝜎\displaystyle D_{\sigma}italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT for Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ). This notation appears, for example, in Example 5.3.

5. A formula for D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) in the hypersurface case

Let f:𝒴n𝒵n+1:𝑓superscript𝒴𝑛superscript𝒵𝑛1\displaystyle f\colon\mathcal{Y}^{n}\to\mathcal{Z}^{n+1}italic_f : caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → caligraphic_Z start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT be a finite mapping between complex manifolds (not necessarily a reflection mapping). The 0th Fitting ideal F0(π𝒪D2(f))subscript𝐹0subscript𝜋subscript𝒪superscript𝐷2𝑓\displaystyle F_{0}(\pi_{*}\mathcal{O}_{D^{2}(f)})italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_π start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) end_POSTSUBSCRIPT ) of the projection π:D2(f)𝒴:𝜋superscript𝐷2𝑓𝒴\displaystyle\pi\colon D^{2}(f)\to\mathcal{Y}italic_π : italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) → caligraphic_Y is then a principal ideal (if dimD2(f)=n1dimsuperscript𝐷2𝑓𝑛1\displaystyle\operatorname{dim}D^{2}(f)=n-1roman_dim italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = italic_n - 1, this is true because D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) is Cohen-Macaulay, see the first paragraph of Section 3. In the case of dimD2(f)=ndimsuperscript𝐷2𝑓𝑛\displaystyle\operatorname{dim}D^{2}(f)=nroman_dim italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = italic_n, one simply gets the zero ideal). We usually write λ𝒪𝒴𝜆subscript𝒪𝒴\displaystyle\lambda\in\mathcal{O}_{\mathcal{Y}}italic_λ ∈ caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT for a generator of this ideal, so that

D(f)=V(λ).𝐷𝑓𝑉𝜆\displaystyle D(f)=V(\lambda).italic_D ( italic_f ) = italic_V ( italic_λ ) .

If f:𝒴nn+1:𝑓superscript𝒴𝑛superscript𝑛1\displaystyle f\colon\mathcal{Y}^{n}\to\mathbb{C}^{n+1}italic_f : caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT is a reflection mapping, then we have that

Dσ(f)=V(λσ),subscript𝐷𝜎𝑓𝑉subscript𝜆𝜎\displaystyle D_{\sigma}(f)=V(\lambda_{\sigma}),italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) = italic_V ( italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) ,

where, according to the description given below Definition 4.13, the functions λσsubscript𝜆𝜎\displaystyle\lambda_{\sigma}italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT are

λσ={σ1LLσ,ifσis a reflectionσ1LL,otherwisesubscript𝜆𝜎casessuperscript𝜎1𝐿𝐿subscript𝜎ifσis a reflectionotherwisesuperscript𝜎1𝐿𝐿otherwiseotherwise\displaystyle\lambda_{\sigma}=\begin{cases}\frac{\sigma^{-1}L-L}{\ell_{\sigma}%},\quad\text{if $\displaystyle\sigma$ is a reflection}\\\sigma^{-1}L-L,\quad\text{otherwise}\end{cases}italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = { start_ROW start_CELL divide start_ARG italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L - italic_L end_ARG start_ARG roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG , if italic_σ is a reflection end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L - italic_L , otherwise end_CELL start_CELL end_CELL end_ROW

Observe that, even though L𝐿\displaystyle Litalic_L vanishes on 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y, we have chosen to keep the term L𝐿\displaystyle Litalic_L in the λσsubscript𝜆𝜎\displaystyle\lambda_{\sigma}italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT expressions. This allows for the divisibility by σsubscript𝜎\displaystyle\ell_{\sigma}roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT to hold on the ambient space 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V, making computations easier.

Before giving an explicit formula for the double point space D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ), we need the following technical lemma, whose proof is in Appendix A.

Lemma 5.1 (Unfolding With Good Double Points).

Every multi-germ of reflection mapping f:(𝒴n,Wy)n+1:𝑓superscript𝒴𝑛𝑊𝑦superscript𝑛1\displaystyle f\colon(\mathcal{Y}^{n},Wy)\to\mathcal{\mathbb{C}}^{n+1}italic_f : ( caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_W italic_y ) → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPTadmits a W𝑊\displaystyle Witalic_W-unfolding F𝐹\displaystyle Fitalic_F, such that, for all σ,τW{1}𝜎𝜏𝑊1\displaystyle\sigma,\tau\in W\setminus\{1\}italic_σ , italic_τ ∈ italic_W ∖ { 1 },

dim(Dσ(F)Fixτ)<dimDσ(F).dimsubscript𝐷𝜎𝐹Fix𝜏dimsubscript𝐷𝜎𝐹\displaystyle\operatorname{dim}(D_{\sigma}(F)\cap\operatorname{Fix}\tau)<%\operatorname{dim}D_{\sigma}(F).roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_F ) ∩ roman_Fix italic_τ ) < roman_dim italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_F ) .
Theorem 5.2.

As a complex space, the double point space D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) is the zero locus of

λ=σW{1}λσ.𝜆subscriptproduct𝜎𝑊1subscript𝜆𝜎\displaystyle\lambda=\prod_{\sigma\in W\setminus\{1\}}\lambda_{\sigma}.italic_λ = ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT .
Proof.

The expression ΠσW{1}λσsubscriptΠ𝜎𝑊1subscript𝜆𝜎\displaystyle\Pi_{\sigma\in W\setminus\{1\}}\lambda_{\sigma}roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT behaves well under W𝑊\displaystyle Witalic_W-unfoldings obviously, and it is well known that D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) behaves well under general unfoldings (see for example [14]). Therefore, we may assume f𝑓\displaystyle fitalic_f to satisfy the conditions of Lemma 5.1 and to be generically one-to-one, by the generically one-to-one unfolding Lemma 2.11. The generically one-to-one condition gives dimD2(f)=n1dimsuperscript𝐷2𝑓𝑛1\displaystyle\operatorname{dim}D^{2}(f)=n-1roman_dim italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = italic_n - 1, which forces D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) to be Cohen-Macaulay, by Proposition 4.8. From the decomposition D2(f)=σW{1}D2σ(f)superscript𝐷2𝑓subscript𝜎𝑊1subscriptsuperscript𝐷𝜎2𝑓\displaystyle D^{2}(f)=\cup_{\sigma\in W\setminus\{1\}}D^{\sigma}_{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = ∪ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) and Item (1) of Proposition 4.10, it follows that the branches D2σ(f)subscriptsuperscript𝐷𝜎2𝑓\displaystyle D^{\sigma}_{2}(f)italic_D start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) are Cohen-Macaulay spaces of dimension n1𝑛1\displaystyle n-1italic_n - 1 as well. We claim that this, added to the fact that f𝑓\displaystyle fitalic_f satisfies the conditions of Lemma 5.1, implies that Dσ2(f)subscriptsuperscript𝐷2𝜎𝑓\displaystyle D^{2}_{\sigma}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) and Dτ2(f)subscriptsuperscript𝐷2𝜏𝑓\displaystyle D^{2}_{\tau}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) have no irreducible components in common, for all στ𝜎𝜏\displaystyle\sigma\neq\tauitalic_σ ≠ italic_τ. This is true because points in Dσ2(f)Dτ2(f)subscriptsuperscript𝐷2𝜎𝑓subscriptsuperscript𝐷2𝜏𝑓\displaystyle D^{2}_{\sigma}(f)\cap D^{2}_{\tau}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∩ italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) are of the form (u,σu)=(u,τu)𝑢𝜎𝑢𝑢𝜏𝑢\displaystyle(u,\sigma u)=(u,\tau u)( italic_u , italic_σ italic_u ) = ( italic_u , italic_τ italic_u ), hence satisfy uFixσ1τ𝑢Fixsuperscript𝜎1𝜏\displaystyle u\in\operatorname{Fix}\sigma^{-1}\tauitalic_u ∈ roman_Fix italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_τ, but dim(Dσ(f)Fixσ1τ)<n1dimsubscript𝐷𝜎𝑓Fixsuperscript𝜎1𝜏𝑛1\displaystyle\operatorname{dim}(D_{\sigma}(f)\cap\operatorname{Fix}\sigma^{-1}%\tau)<n-1roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∩ roman_Fix italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_τ ) < italic_n - 1.Now it follows from Item (3) of Proposition 4.10 that every branch D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) has a dense open subset on which D2(f)superscript𝐷2𝑓\displaystyle D^{2}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D2σ(f)superscriptsubscript𝐷2𝜎𝑓\displaystyle D_{2}^{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) are locally isomorphic.Since Dσ2(f)subscriptsuperscript𝐷2𝜎𝑓\displaystyle D^{2}_{\sigma}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) and Dτ2(f)subscriptsuperscript𝐷2𝜏𝑓\displaystyle D^{2}_{\tau}(f)italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) have no common irreducible components and the isomorphisms D2σ(f)Dσ(f)superscriptsubscript𝐷2𝜎𝑓subscript𝐷𝜎𝑓\displaystyle D_{2}^{\sigma}(f)\to D_{\sigma}(f)italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) → italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) give F0((π|D2σ(f))𝒪D2σ(f))=λσ\displaystyle F_{0}((\pi_{|_{D^{\sigma}_{2}(f)}})_{*}\mathcal{O}_{D^{\sigma}_{%2}(f)})=\langle\lambda_{\sigma}\rangleitalic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_π start_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) end_POSTSUBSCRIPT ) = ⟨ italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ⟩, the result follows directly from Proposition 2.14.∎

Example 5.3.

Consider the D8subscript𝐷8\displaystyle D_{8}italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-reflected graph

f1D8:(x,y)(x2+y2,x2y2,2x+y),:subscriptsuperscript𝑓subscript𝐷81maps-to𝑥𝑦superscript𝑥2superscript𝑦2superscript𝑥2superscript𝑦22𝑥𝑦\displaystyle f^{D_{8}}_{1}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x+y),italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x + italic_y ) ,

from Examples 2.4 and 3.5. With the notation of the Example 2.2, for the reflections σi,i=1,2,3,4formulae-sequencesubscript𝜎𝑖𝑖1234\displaystyle\sigma_{i},i=1,2,3,4italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_i = 1 , 2 , 3 , 4, the generators λσisubscript𝜆subscript𝜎𝑖\displaystyle\lambda_{\sigma_{i}}italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT of the ideals of Dσisubscript𝐷subscript𝜎𝑖\displaystyle D_{\sigma_{i}}italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT are units, hence Dσi=subscript𝐷subscript𝜎𝑖\displaystyle D_{\sigma_{i}}=\emptysetitalic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ∅. The spaces Dρ1,Dρ2subscript𝐷subscript𝜌1subscript𝐷subscript𝜌2\displaystyle D_{\rho_{1}},D_{\rho_{2}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Dρ3subscript𝐷subscript𝜌3\displaystyle D_{\rho_{3}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are lines, given by the vanishing of

λρ1=x+3y,λρ2=4x+2y,λρ3=3xy.formulae-sequencesubscript𝜆subscript𝜌1𝑥3𝑦formulae-sequencesubscript𝜆subscript𝜌24𝑥2𝑦subscript𝜆subscript𝜌33𝑥𝑦\displaystyle\lambda_{\rho_{1}}=x+3y,\qquad\lambda_{\rho_{2}}=4x+2y,\qquad%\lambda_{\rho_{3}}=3x-y.italic_λ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_x + 3 italic_y , italic_λ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 4 italic_x + 2 italic_y , italic_λ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 3 italic_x - italic_y .

This double point curves are depicted in Figure 3.Since ρ11=ρ3superscriptsubscript𝜌11subscript𝜌3\displaystyle\rho_{1}^{-1}=\rho_{3}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, the branches Dρ1subscript𝐷subscript𝜌1\displaystyle D_{\rho_{1}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Dρ3subscript𝐷subscript𝜌3\displaystyle D_{\rho_{3}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are glued together on a single branch f(Dρ1)=f(Dρ3)𝑓subscript𝐷subscript𝜌1𝑓subscript𝐷subscript𝜌3\displaystyle f(D_{\rho_{1}})=f(D_{\rho_{3}})italic_f ( italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_f ( italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) of double points on the image of f𝑓\displaystyle fitalic_f. In contrast, since ρ21=ρ2superscriptsubscript𝜌21subscript𝜌2\displaystyle\rho_{2}^{-1}=\rho_{2}italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the branch Dρ2subscript𝐷subscript𝜌2\displaystyle D_{\rho_{2}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is glued to itself to produce the branch f(Dρ2)𝑓subscript𝐷subscript𝜌2\displaystyle f(D_{\rho_{2}})italic_f ( italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) on the image. This forces Dρ2subscript𝐷subscript𝜌2\displaystyle D_{\rho_{2}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT to be ρ2subscript𝜌2\displaystyle\rho_{2}italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-symmetric (or, in other words, it forces Dρ2subscript𝐷subscript𝜌2\displaystyle D_{\rho_{2}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT to have ρ2subscript𝜌2\displaystyle\rho_{2}italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as an automorphism). By contrast Dρ1subscript𝐷subscript𝜌1\displaystyle D_{\rho_{1}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is not ρ1subscript𝜌1\displaystyle\rho_{1}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-symmetric, but ρ1subscript𝜌1\displaystyle\rho_{1}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT takes Dρ1subscript𝐷subscript𝜌1\displaystyle D_{\rho_{1}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT isomorphically onto Dρ3subscript𝐷subscript𝜌3\displaystyle D_{\rho_{3}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

A more complex example is the mapping

f2D8:(x,y)(x2+y2,x2y2,2x2+3xyy2+2x3+8x2y2xy22y3),:subscriptsuperscript𝑓subscript𝐷82maps-to𝑥𝑦superscript𝑥2superscript𝑦2superscript𝑥2superscript𝑦22superscript𝑥23𝑥𝑦superscript𝑦22superscript𝑥38superscript𝑥2𝑦2𝑥superscript𝑦22superscript𝑦3\displaystyle f^{D_{8}}_{2}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x^{2}+3%xy-y^{2}+2x^{3}+8x^{2}y-2xy^{2}-2y^{3}),italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 8 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ,

also from Examples 2.4 and 3.5. This time the branches associated to reflections are nonempty, and they are given by the vanishing of

λσ1=2(3x8x2+2y2),λσ2=3x4x23y14xy4y2,formulae-sequencesubscript𝜆subscript𝜎123𝑥8superscript𝑥22superscript𝑦2subscript𝜆subscript𝜎23𝑥4superscript𝑥23𝑦14𝑥𝑦4superscript𝑦2\displaystyle\lambda_{\sigma_{1}}=-2(-3x-8x^{2}+2y^{2}),\qquad\lambda_{\sigma_%{2}}=-3x-4x^{2}-3y-14xy-4y^{2},italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = - 2 ( - 3 italic_x - 8 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) , italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = - 3 italic_x - 4 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 3 italic_y - 14 italic_x italic_y - 4 italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,
λσ3=2(2x2+3y2y2),λσ4=3(xy+2xy).formulae-sequencesubscript𝜆subscript𝜎322superscript𝑥23𝑦2superscript𝑦2subscript𝜆subscript𝜎43𝑥𝑦2𝑥𝑦\displaystyle\lambda_{\sigma_{3}}=2(2x^{2}+3y-2y^{2}),\qquad\lambda_{\sigma_{4%}}=3(x-y+2xy).italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 2 ( 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_y - 2 italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) , italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 3 ( italic_x - italic_y + 2 italic_x italic_y ) .

The curves Dσisubscript𝐷subscript𝜎𝑖\displaystyle D_{\sigma_{i}}italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT are all regular, and each of them gets glued to itself to form a curve f(Dσi)𝑓subscript𝐷subscript𝜎𝑖\displaystyle f(D_{\sigma_{i}})italic_f ( italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) on the image of f𝑓\displaystyle fitalic_f. Consequently, each σisubscript𝜎𝑖\displaystyle\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT acts as an automorphism on Dσi(f)subscript𝐷subscript𝜎𝑖𝑓\displaystyle D_{\sigma_{i}}(f)italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ). The double point branches are depicted in Figure 4. The elements ρisubscript𝜌𝑖\displaystyle\rho_{i}italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT have associated functions

λρ1=3x2+4x3+6xy+6x2y3y210xy2,λρ2=4(x3+4x2yxy2y3),formulae-sequencesubscript𝜆subscript𝜌13superscript𝑥24superscript𝑥36𝑥𝑦6superscript𝑥2𝑦3superscript𝑦210𝑥superscript𝑦2subscript𝜆subscript𝜌24superscript𝑥34superscript𝑥2𝑦𝑥superscript𝑦2superscript𝑦3\displaystyle\lambda_{\rho_{1}}=3x^{2}+4x^{3}+6xy+6x^{2}y-3y^{2}-10xy^{2},%\qquad\lambda_{\rho_{2}}=4(x^{3}+4x^{2}y-xy^{2}-y^{3}),italic_λ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 3 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 6 italic_x italic_y + 6 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 3 italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 10 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_λ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 4 ( italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 4 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ,
λρ3=3x2+6xy+10x2y3y2+6xy24y3.subscript𝜆subscript𝜌33superscript𝑥26𝑥𝑦10superscript𝑥2𝑦3superscript𝑦26𝑥superscript𝑦24superscript𝑦3\displaystyle\lambda_{\rho_{3}}=3x^{2}+6xy+10x^{2}y-3y^{2}+6xy^{2}-4y^{3}.italic_λ start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 3 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_x italic_y + 10 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 3 italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT .

The space Dρ1subscript𝐷subscript𝜌1\displaystyle D_{\rho_{1}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT consists of two branches Dρ1(1)superscriptsubscript𝐷subscript𝜌11\displaystyle D_{\rho_{1}}^{(1)}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT and Dρ1(2)superscriptsubscript𝐷subscript𝜌12\displaystyle D_{\rho_{1}}^{(2)}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT. Since ρ11=ρ3subscriptsuperscript𝜌11subscript𝜌3\displaystyle\rho^{-1}_{1}=\rho_{3}italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, the space Dρ3subscript𝐷subscript𝜌3\displaystyle D_{\rho_{3}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is isomorphic to Dρ1subscript𝐷subscript𝜌1\displaystyle D_{\rho_{1}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, and its two branches Dρ3(1)superscriptsubscript𝐷subscript𝜌31\displaystyle D_{\rho_{3}}^{(1)}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT and Dρ3(2)superscriptsubscript𝐷subscript𝜌32\displaystyle D_{\rho_{3}}^{(2)}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT (depicted as dashed lines) are identified with the branches of Dρ1subscript𝐷subscript𝜌1\displaystyle D_{\rho_{1}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT to form the two branches f(Dρ1(i))=f(Dρ3(i))𝑓superscriptsubscript𝐷subscript𝜌1𝑖𝑓superscriptsubscript𝐷subscript𝜌3𝑖\displaystyle f(D_{\rho_{1}}^{(i)})=f(D_{\rho_{3}}^{(i)})italic_f ( italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ) = italic_f ( italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ), with i=1,2𝑖12\displaystyle i=1,2italic_i = 1 , 2. Finally, the space Dρ2subscript𝐷subscript𝜌2\displaystyle D_{\rho_{2}}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT consists of three branches Dρ2(i)superscriptsubscript𝐷subscript𝜌2𝑖\displaystyle D_{\rho_{2}}^{(i)}italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT, each being glued to itself to form the curve f(Dρ2(i))𝑓superscriptsubscript𝐷subscript𝜌2𝑖\displaystyle f(D_{\rho_{2}}^{(i)})italic_f ( italic_D start_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ) on the image of f𝑓\displaystyle fitalic_f.

Double points and image of reflection maps (3)
Double points and image of reflection maps (4)
Remark 5.4.

It is well known that the jacobian Jω𝐽𝜔\displaystyle J\omegaitalic_J italic_ω (that is, the determinant of the differential matrix of ω𝜔\displaystyle\omegaitalic_ω) equals the product of the equations of the reflecting hyperplanes of all reflections in W𝑊\displaystyle Witalic_W. Consequently, the expression for λ𝜆\displaystyle\lambdaitalic_λ can be rewritten as

λ=σW{1}σLJω.𝜆subscriptproduct𝜎𝑊1𝜎𝐿𝐽𝜔\displaystyle\lambda=\frac{\prod_{\sigma\in W\setminus\{1\}}\sigma L}{J\omega}.italic_λ = divide start_ARG ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_σ italic_L end_ARG start_ARG italic_J italic_ω end_ARG .
Remark 5.5.

If f=(ω,H)𝑓𝜔𝐻\displaystyle f=(\omega,H)italic_f = ( italic_ω , italic_H ) is a reflected graph nn+1superscript𝑛superscript𝑛1\displaystyle\mathbb{C}^{n}\to\mathbb{C}^{n+1}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT and H𝐻\displaystyle Hitalic_H is hom*ogeneous of degree d𝑑\displaystyle ditalic_d, as in Remark 3.6, then D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) is hom*ogeneous of degree (|W|1)dr𝑊1𝑑𝑟\displaystyle(|W|-1)d-r( | italic_W | - 1 ) italic_d - italic_r, where r𝑟\displaystyle ritalic_r is the number of reflections in |W|𝑊\displaystyle|W|| italic_W |.

The double point curve D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) of a reflection mapping 𝒴23superscript𝒴2superscript3\displaystyle\mathcal{Y}^{2}\to\mathbb{C}^{3}caligraphic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT

In these dimensions the double point spaces are plane curves when they have the right dimension. Moreover, a germ f:(2,0)(3,0):𝑓superscript20superscript30\displaystyle f\colon(\mathbb{C}^{2},0)\to(\mathbb{C}^{3},0)italic_f : ( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 0 ) is 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite if and only if D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) is a reduced plane curve [9]. For these mappings, one is interested in computing the Milnor number μ(D(f))𝜇𝐷𝑓\displaystyle\mu(D(f))italic_μ ( italic_D ( italic_f ) ) and the delta invariant δ(D(f))𝛿𝐷𝑓\displaystyle\delta(D(f))italic_δ ( italic_D ( italic_f ) ). This is much easier for reflection mappings than it is for arbitrary mappings, thanks to the following criterion, which follows easily by putting together Hironaka’s μ=2δr+1𝜇2𝛿𝑟1\displaystyle\mu=2\delta-r+1italic_μ = 2 italic_δ - italic_r + 1 formula, the additivity of δ𝛿\displaystyle\deltaitalic_δ and the decomposition λ=Πσ1λσ𝜆subscriptΠ𝜎1subscript𝜆𝜎\displaystyle\lambda=\Pi_{\sigma\neq 1}\lambda_{\sigma}italic_λ = roman_Π start_POSTSUBSCRIPT italic_σ ≠ 1 end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT of Theorem 5.2.

Proposition 5.6.

A reflection mapping f:(𝒴2,y)(3,0):𝑓superscript𝒴2𝑦superscript30\displaystyle f\colon(\mathcal{Y}^{2},y)\to(\mathbb{C}^{3},0)italic_f : ( caligraphic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y ) → ( blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 0 ) is 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite if and only if all the Milnor numbersμ(Dσ(f))𝜇subscript𝐷𝜎𝑓\displaystyle\mu(D_{\sigma}(f))italic_μ ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ) and all the intersection numbers Dσ(f)Dτ(f)subscript𝐷𝜎𝑓subscript𝐷𝜏𝑓\displaystyle D_{\sigma}(f)\cdot D_{\tau}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ), with στ𝜎𝜏\displaystyle\sigma\neq\tauitalic_σ ≠ italic_τ, are finite. In this case,

δ(D(f))=σW{1}(δ(Dσ(f))+12τW{1,σ}Dσ(f)Dτ(f)),𝛿𝐷𝑓subscript𝜎𝑊1𝛿subscript𝐷𝜎𝑓12subscript𝜏𝑊1𝜎subscript𝐷𝜎𝑓subscript𝐷𝜏𝑓\displaystyle\delta(D(f))=\sum_{\sigma\in W\setminus\{1\}}\Big{(}\delta(D_{%\sigma}(f))+\frac{1}{2}\sum_{\tau\in W\setminus\{1,\sigma\}}D_{\sigma}(f)\cdotD%_{\tau}(f)\Big{)},italic_δ ( italic_D ( italic_f ) ) = ∑ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT ( italic_δ ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_τ ∈ italic_W ∖ { 1 , italic_σ } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) ) ,

and

μ(D(f))=σW{1}(μ(Dσ(f))+τW{1,σ}Dσ(f)Dτ(f))+k|W|+2,𝜇𝐷𝑓subscript𝜎𝑊1𝜇subscript𝐷𝜎𝑓subscript𝜏𝑊1𝜎subscript𝐷𝜎𝑓subscript𝐷𝜏𝑓𝑘𝑊2\displaystyle\mu(D(f))=\sum_{\sigma\in W\setminus\{1\}}\Big{(}\mu(D_{\sigma}(f%))+\sum_{\tau\in W\setminus\{1,\sigma\}}D_{\sigma}(f)\cdot D_{\tau}(f)\Big{)}+%k-|W|+2,italic_μ ( italic_D ( italic_f ) ) = ∑ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT ( italic_μ ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ) + ∑ start_POSTSUBSCRIPT italic_τ ∈ italic_W ∖ { 1 , italic_σ } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) ) + italic_k - | italic_W | + 2 ,

where Dσi(f)Dσj(f)=dim(𝒪𝒴/λσi,λσj)subscript𝐷subscript𝜎𝑖𝑓subscript𝐷subscript𝜎𝑗𝑓subscriptdimsubscript𝒪𝒴subscript𝜆subscript𝜎𝑖subscript𝜆subscript𝜎𝑗\displaystyle D_{\sigma_{i}}(f)\cdot D_{\sigma_{j}}(f)=\operatorname{dim}_{%\mathbb{C}}(\mathcal{O}_{\mathcal{Y}}/\left\langle\lambda_{\sigma_{i}},\lambda%_{\sigma_{j}}\right\rangle)italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) = roman_dim start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT / ⟨ italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_λ start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ ) is the intersection number of the branches Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) and Dτ(f)subscript𝐷𝜏𝑓\displaystyle D_{\tau}(f)italic_D start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) andk𝑘\displaystyle kitalic_k is the number of elements σ𝜎\displaystyle\sigmaitalic_σ for which Dσ(f)=subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)=\emptysetitalic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) = ∅ (We follow the convention that δ()=μ()=0𝛿𝜇0\displaystyle\delta(\emptyset)=\mu(\emptyset)=0italic_δ ( ∅ ) = italic_μ ( ∅ ) = 0).

The data of the μ(Dσ(f))𝜇subscript𝐷𝜎𝑓\displaystyle\mu(D_{\sigma}(f))italic_μ ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ), δ(Dσ(f))𝛿subscript𝐷𝜎𝑓\displaystyle\delta(D_{\sigma}(f))italic_δ ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ), Dσi(f)Dσjsubscript𝐷subscript𝜎𝑖𝑓subscript𝐷subscript𝜎𝑗\displaystyle D_{\sigma_{i}}(f)\cdot D_{\sigma_{j}}italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT and whether a branch Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is empty can be stored easily in matrix form. Here is a convenient way to do it: First choose an ordering of the reflection group W={σ0,σ1,,σ|W|1},𝑊subscript𝜎0subscript𝜎1subscript𝜎𝑊1\displaystyle W=\{\sigma_{0},\sigma_{1},\dots,\sigma_{|W|-1}\},italic_W = { italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_σ start_POSTSUBSCRIPT | italic_W | - 1 end_POSTSUBSCRIPT } ,where σ0=1subscript𝜎01\displaystyle\sigma_{0}=1italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1. Let I𝐼\displaystyle Iitalic_I be the (|W|1)×(|W|1)𝑊1𝑊1\displaystyle(|W|-1)\times(|W|-1)( | italic_W | - 1 ) × ( | italic_W | - 1 ) matrix with entries

Iij={0,ifi=jandDσi(f),1,ifi=jandDσi(f)=,Dσi(f)Dσj(f),ifijandDσi(f)Dσj(f)<,1,ifijandDσi(f)Dσj(f)=,\displaystyle I_{ij}=\left\{\begin{matrix}0,&\mbox{ if }i=j\mbox{ and }D_{%\sigma_{i}}(f)\neq\emptyset,\\1,&\mbox{ if }i=j\mbox{ and }D_{\sigma_{i}}(f)=\emptyset,\\D_{\sigma_{i}}(f)\cdot D_{\sigma_{j}}(f),&\mbox{ if }i\neq j\text{ and }D_{%\sigma_{i}}(f)\cdot D_{\sigma_{j}}(f)<\infty,\\-1,&\mbox{ if }i\neq j\text{ and }D_{\sigma_{i}}(f)\cdot D_{\sigma_{j}}(f)=%\infty,\par\end{matrix}\right.italic_I start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = { start_ARG start_ROW start_CELL 0 , end_CELL start_CELL if italic_i = italic_j and italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ≠ ∅ , end_CELL end_ROW start_ROW start_CELL 1 , end_CELL start_CELL if italic_i = italic_j and italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) = ∅ , end_CELL end_ROW start_ROW start_CELL italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) , end_CELL start_CELL if italic_i ≠ italic_j and italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) < ∞ , end_CELL end_ROW start_ROW start_CELL - 1 , end_CELL start_CELL if italic_i ≠ italic_j and italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) = ∞ , end_CELL end_ROW end_ARG

Let M𝑀\displaystyle Mitalic_M be the size (|W|1)𝑊1\displaystyle(|W|-1)( | italic_W | - 1 ) vector with entries

Mi={0,ifDσi(f)=,μ(Dσi(f))ifDσi(f)is a reduced curve1,otherwise\displaystyle M_{i}=\left\{\begin{matrix}0,&\mbox{ if }D_{\sigma_{i}}(f)=%\emptyset,\\\mu(D_{\sigma_{i}}(f))&\mbox{ if }D_{\sigma_{i}}(f)\mbox{ is a reduced curve}%\\-1,&\mbox{otherwise}\\\end{matrix}\right.italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = { start_ARG start_ROW start_CELL 0 , end_CELL start_CELL if italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) = ∅ , end_CELL end_ROW start_ROW start_CELL italic_μ ( italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ) end_CELL start_CELL if italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) is a reduced curve end_CELL end_ROW start_ROW start_CELL - 1 , end_CELL start_CELL otherwise end_CELL end_ROW end_ARG

and define the vector ΔΔ\displaystyle\Deltaroman_Δ analogously, but replacing every μ(Dσi(f))𝜇subscript𝐷subscript𝜎𝑖𝑓\displaystyle\mu(D_{\sigma_{i}}(f))italic_μ ( italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ) with δ(Dσi(f))𝛿subscript𝐷subscript𝜎𝑖𝑓\displaystyle\delta(D_{\sigma_{i}}(f))italic_δ ( italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) ). A 11\displaystyle-1- 1 value anywhere indicates that D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) is non-reduced, hence that f𝑓\displaystyle fitalic_f fails to be 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite. In the abscence of any 11\displaystyle-1- 1, the mapping f𝑓\displaystyle fitalic_f is 𝒜𝒜\displaystyle\mathcal{A}caligraphic_A-finite and the formulae in 5.6 turn into

μ(D(f))=i=1|W|1Mi+i,j=1|W|1Iij|W|+2,𝜇𝐷𝑓superscriptsubscript𝑖1𝑊1subscript𝑀𝑖superscriptsubscript𝑖𝑗1𝑊1subscript𝐼𝑖𝑗𝑊2\displaystyle\mu(D(f))=\sum_{i=1}^{|W|-1}M_{i}+\sum_{i,j=1}^{|W|-1}I_{ij}-|W|+2,italic_μ ( italic_D ( italic_f ) ) = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT | italic_W | - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT | italic_W | - 1 end_POSTSUPERSCRIPT italic_I start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - | italic_W | + 2 ,
δ(D(f))=i=1|W|1Δi+1i<j|W|1Iij,𝛿𝐷𝑓superscriptsubscript𝑖1𝑊1subscriptΔ𝑖subscript1𝑖𝑗𝑊1subscript𝐼𝑖𝑗\displaystyle\delta(D(f))=\sum_{i=1}^{|W|-1}\Delta_{i}+\sum_{1\leq i<j\leq|W|-%1}I_{ij},italic_δ ( italic_D ( italic_f ) ) = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT | italic_W | - 1 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUBSCRIPT 1 ≤ italic_i < italic_j ≤ | italic_W | - 1 end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,

Furthermore, the number of branches of D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) is the sum of the number of branches of all the Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ), which is equal to

i=1|W|1(2ΔiMiIii)+|W|1.superscriptsubscript𝑖1𝑊12subscriptΔ𝑖subscript𝑀𝑖subscript𝐼𝑖𝑖𝑊1\displaystyle\sum_{i=1}^{|W|-1}(2\Delta_{i}-M_{i}-I_{ii})+|W|-1.∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT | italic_W | - 1 end_POSTSUPERSCRIPT ( 2 roman_Δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_I start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) + | italic_W | - 1 .

Observe that the matrix I𝐼\displaystyle Iitalic_I is symmetric and that the vectors M𝑀\displaystyle Mitalic_M and ΔΔ\displaystyle\Deltaroman_Δ must contain the same value at the positions corresponding to Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) and Dσ1(f)subscript𝐷superscript𝜎1𝑓\displaystyle D_{\sigma^{-1}}(f)italic_D start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_f ), since these are isomorphic spaces by virtue of Item 4 of Theorem 4.

Example 5.7.

Consider the mapping f2D8superscriptsubscript𝑓2subscript𝐷8\displaystyle f_{2}^{D_{8}}italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT of Example 2.4, whose double point branches were computed in Example 5.3. By ordering the group as 1,σ1,σ2,σ3,σ4,ρ1,ρ2,ρ31subscript𝜎1subscript𝜎2subscript𝜎3subscript𝜎4subscript𝜌1subscript𝜌2subscript𝜌3\displaystyle 1,\sigma_{1},\sigma_{2},\sigma_{3},\sigma_{4},\rho_{1},\rho_{2},%\rho_{3}1 , italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT (see Example 2.2), computing the Milnor numbers and the intersection number of all pairs of branches, one gets

M=(0,0,0,0,1,4,1),Δ=(0,0,0,0,1,3,1),I=(0111232101123211012321110232222206633336062222660)formulae-sequence𝑀0000141formulae-sequenceΔ0000131𝐼matrix0111232101123211012321110232222206633336062222660\displaystyle M=(0,0,0,0,1,4,1),\quad\Delta=(0,0,0,0,1,3,1),\quad I=\begin{%pmatrix}0&1&1&1&2&3&2\\1&0&1&1&2&3&2\\1&1&0&1&2&3&2\\1&1&1&0&2&3&2\\2&2&2&2&0&6&6\\3&3&3&3&6&0&6\\2&2&2&2&6&6&0\\\end{pmatrix}italic_M = ( 0 , 0 , 0 , 0 , 1 , 4 , 1 ) , roman_Δ = ( 0 , 0 , 0 , 0 , 1 , 3 , 1 ) , italic_I = ( start_ARG start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 2 end_CELL start_CELL 3 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 2 end_CELL start_CELL 3 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 2 end_CELL start_CELL 3 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 2 end_CELL start_CELL 3 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 0 end_CELL start_CELL 6 end_CELL start_CELL 6 end_CELL end_ROW start_ROW start_CELL 3 end_CELL start_CELL 3 end_CELL start_CELL 3 end_CELL start_CELL 3 end_CELL start_CELL 6 end_CELL start_CELL 0 end_CELL start_CELL 6 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 2 end_CELL start_CELL 6 end_CELL start_CELL 6 end_CELL start_CELL 0 end_CELL end_ROW end_ARG )

From this, one computes μ(D(f2D8))=6+1048+2=104𝜇𝐷superscriptsubscript𝑓2subscript𝐷8610482104\displaystyle\mu(D(f_{2}^{D_{8}}))=6+104-8+2=104italic_μ ( italic_D ( italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ) = 6 + 104 - 8 + 2 = 104 and δ(D(f2D8))=5+52=57𝛿𝐷superscriptsubscript𝑓2subscript𝐷855257\displaystyle\delta(D(f_{2}^{D_{8}}))=5+52=57italic_δ ( italic_D ( italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ) = 5 + 52 = 57.

This same method is efficient when applied to bigger groups. For example, for the reflection mapping given by the reflection group 𝔖4subscript𝔖4\displaystyle\mathfrak{S}_{4}fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT of Example 2.3 and the embedding (x,y)((x+y)2,x,y)𝑥𝑦superscript𝑥𝑦2𝑥𝑦\displaystyle(x,y)\to((x+y)^{2},x,y)( italic_x , italic_y ) → ( ( italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x , italic_y ), the vectors and square matrix involved have size 23, but it is better to look at the information in this format than trying to understand the space D(f)𝐷𝑓\displaystyle D(f)italic_D ( italic_f ) formed by all branches together. For this particular example, one gets μ(D(f))=399𝜇𝐷𝑓399\displaystyle\mu(D(f))=399italic_μ ( italic_D ( italic_f ) ) = 399 and δ(D(f))=208𝛿𝐷𝑓208\displaystyle\delta(D(f))=208italic_δ ( italic_D ( italic_f ) ) = 208.

Example 5.8.

If f𝑓\displaystyle fitalic_f is a reflection graph with hom*ogeneous H𝐻\displaystyle Hitalic_H, as in Remarks 3.6 and 5.5, then, by ordering W𝑊\displaystyle Witalic_W as identity first, then reflections and then non-reflections, one obtains

Mi={(d2)2,i=1,,r,(d1)2,i=r+1,|W|1,Dσ(f)Dτ(f)={(d1)2,ifσandτare reflections,d2,ifσandτare non-reflections,d(d1),otherwise\displaystyle M_{i}=\left\{\begin{matrix}(d-2)^{2},\,i=1,\dots,r,\\(d-1)^{2},\,i=r+1,\dots|W|-1\par\end{matrix}\right.,\quad D_{\sigma}(f)\cdot D%_{\tau}(f)=\left\{\begin{matrix}(d-1)^{2},\text{if }\sigma\text{ and }\tau%\text{ are reflections},\\d^{2},\text{if }\sigma\text{ and }\tau\text{ are non-reflections},\\d(d-1),\text{otherwise}\end{matrix}\right.italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = { start_ARG start_ROW start_CELL ( italic_d - 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_i = 1 , … , italic_r , end_CELL end_ROW start_ROW start_CELL ( italic_d - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_i = italic_r + 1 , … | italic_W | - 1 end_CELL end_ROW end_ARG , italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ⋅ italic_D start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ( italic_f ) = { start_ARG start_ROW start_CELL ( italic_d - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , if italic_σ and italic_τ are reflections , end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , if italic_σ and italic_τ are non-reflections , end_CELL end_ROW start_ROW start_CELL italic_d ( italic_d - 1 ) , otherwise end_CELL end_ROW end_ARG

where r𝑟\displaystyle ritalic_r is the number of reflections in W𝑊\displaystyle Witalic_W.Therefore,

μ(D(f))=(1+d+rd|W|)2𝜇𝐷𝑓superscript1𝑑𝑟𝑑𝑊2\displaystyle\mu(D(f))=(1+d+r-d|W|)^{2}italic_μ ( italic_D ( italic_f ) ) = ( 1 + italic_d + italic_r - italic_d | italic_W | ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

(observe that this also follows from Remark 5.5) and

δ(D(f))=12(1dr+d|W|)(dr+d|W|).𝛿𝐷𝑓121𝑑𝑟𝑑𝑊𝑑𝑟𝑑𝑊\displaystyle\delta(D(f))=\frac{1}{2}(-1-d-r+d|W|)(-d-r+d|W|).italic_δ ( italic_D ( italic_f ) ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( - 1 - italic_d - italic_r + italic_d | italic_W | ) ( - italic_d - italic_r + italic_d | italic_W | ) .

For instance, the map f=f(d1,d2,d3)𝑓superscript𝑓subscript𝑑1subscript𝑑2subscript𝑑3\displaystyle f=f^{(d_{1},d_{2},d_{3})}italic_f = italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT from Example 2.5 has μ(D(f))=(1d1d2d3+d1d2d3)2𝜇𝐷𝑓superscript1subscript𝑑1subscript𝑑2subscript𝑑3subscript𝑑1subscript𝑑2subscript𝑑32\displaystyle\mu(D(f))=(1-d_{1}-d_{2}-d_{3}+d_{1}d_{2}d_{3})^{2}italic_μ ( italic_D ( italic_f ) ) = ( 1 - italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and δ(D(f))=1/2(1d2d3+d1(d2d31))(2d2d3+d1(d2d31))𝛿𝐷𝑓121subscript𝑑2subscript𝑑3subscript𝑑1subscript𝑑2subscript𝑑312subscript𝑑2subscript𝑑3subscript𝑑1subscript𝑑2subscript𝑑31\displaystyle\delta(D(f))=1/2(1-d_{2}-d_{3}+d_{1}(d_{2}d_{3}-1))(2-d_{2}-d_{3}%+d_{1}(d_{2}d_{3}-1))italic_δ ( italic_D ( italic_f ) ) = 1 / 2 ( 1 - italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 1 ) ) ( 2 - italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 1 ) ).

Appendix A Proofs of the unfolding lemmata 2.11 and 5.1

In this section we prove the Generically One-To-One Unfolding Lemma 2.11 and the Unfolding With Good Double Points Lemma 5.1, which are key in the proofs of the explicit equations of the image and double point spaces of reflection mappings in the hypersurface case. The statements of these lemmata are quite intuitive and, if there is anything surprising about them, it is that we could not prove them more easily. One has to keep in mind however that 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is any smooth analytic of codimension one germ, with no hypothesis on how bad its relation to W𝑊\displaystyle Witalic_W is, and most usual transversality arguments do not apply in this setting.

For the most part, it is enough to apply an origin preserving rigid motion to 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y in order to attain the conditions that we desire. However, certain elements of the group may impose problems that cannot be fixed in this way. We start by formalizing who the problematic elements are.

Lemma A.1.

Given a linear endomorphism σ:𝒱𝒱:𝜎𝒱𝒱\displaystyle\sigma\colon\mathcal{V}\to\mathcal{V}italic_σ : caligraphic_V → caligraphic_V, the following statements are equivalent:

  1. (1)

    σ𝜎\displaystyle\sigmaitalic_σ preserves all n𝑛\displaystyle nitalic_n-dimensional vector subspaces of V𝑉\displaystyle Vitalic_V, for certain 1<n<dim𝒱1𝑛dim𝒱\displaystyle 1<n<\operatorname{dim}\mathcal{V}1 < italic_n < roman_dim caligraphic_V.

  2. (2)

    σ𝜎\displaystyle\sigmaitalic_σ preserves all vector subspaces of 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V.

  3. (3)

    The matrix representation of σ𝜎\displaystyle\sigmaitalic_σ in some (or any) basis of 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V is

    σ=[ξξ],𝜎matrix𝜉missing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpressionmissing-subexpression𝜉\displaystyle\sigma=\begin{bmatrix}\xi&&\\&\ddots&\\&&\xi\end{bmatrix},italic_σ = [ start_ARG start_ROW start_CELL italic_ξ end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ⋱ end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL italic_ξ end_CELL end_ROW end_ARG ] ,

    for some ξ𝜉\displaystyle\xi\in\mathbb{C}italic_ξ ∈ blackboard_C.

Proof.

That the first statement implies the second follows easily after observing that, fixed 1n<dim𝒱1𝑛dim𝒱\displaystyle 1\leq n<\operatorname{dim}\mathcal{V}1 ≤ italic_n < roman_dim caligraphic_V, any vector subspace can be expressed by means of intersection and sums of n𝑛\displaystyle nitalic_n-dimensional subspaces. The remaining implications are immediate.∎

Definition A.2.

Any linear endomorphism σ:𝒱𝒱:𝜎𝒱𝒱\displaystyle\sigma\colon\mathcal{V}\to\mathcal{V}italic_σ : caligraphic_V → caligraphic_V satisfying the conditions above is called a complex hom*othety (centered at the origin). Given a subspace K𝒱𝐾𝒱\displaystyle K\leq\mathcal{V}italic_K ≤ caligraphic_V, we say that σ𝜎\displaystyle\sigmaitalic_σ acts as a complex hom*othety on K𝐾\displaystyle Kitalic_K if σ(K)=K𝜎𝐾𝐾\displaystyle\sigma(K)=Kitalic_σ ( italic_K ) = italic_K and σ|K:KK\displaystyle\sigma_{|_{K}}\colon K\to Kitalic_σ start_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT : italic_K → italic_K is a complex hom*othety.

We will use the following basic result, whose proof is ommited.

Lemma A.3.

Let σ:𝒱𝒱:𝜎𝒱𝒱\displaystyle\sigma\colon\mathcal{V}\to\mathcal{V}italic_σ : caligraphic_V → caligraphic_V be a linear automorphism and let 0K𝒱0𝐾𝒱\displaystyle 0\neq K\leq\mathcal{V}0 ≠ italic_K ≤ caligraphic_V be a vector subspace. Let \displaystyle\ellroman_ℓ and n𝑛\displaystyle nitalic_n be positive integers, with dim𝒱dimK<n<dim𝒱dim𝒱dim𝐾𝑛dim𝒱\displaystyle\operatorname{dim}\mathcal{V}-\operatorname{dim}K<n<\operatorname%{dim}\mathcal{V}roman_dim caligraphic_V - roman_dim italic_K < italic_n < roman_dim caligraphic_V. Then, there is a non-empty Zariski open subset of the product of Grassmanians,

σ,K,,nGrass(n,𝒱)××Grass(n,𝒱),\displaystyle\mathscr{H}_{\sigma,K,\ell,n}\subseteq\operatorname{Grass}(n,%\mathcal{V})\times\stackrel{{\scriptstyle\ell}}{{\dots}}\times\operatorname{%Grass}(n,\mathcal{V}),script_H start_POSTSUBSCRIPT italic_σ , italic_K , roman_ℓ , italic_n end_POSTSUBSCRIPT ⊆ roman_Grass ( italic_n , caligraphic_V ) × start_RELOP SUPERSCRIPTOP start_ARG … end_ARG start_ARG roman_ℓ end_ARG end_RELOP × roman_Grass ( italic_n , caligraphic_V ) ,

such that all H=(H1,H)σ,K,,n𝐻subscript𝐻1subscript𝐻subscript𝜎𝐾𝑛\displaystyle H=(H_{1},\dots H_{\ell})\in\mathscr{H}_{\sigma,K,\ell,n}italic_H = ( italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_H start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ) ∈ script_H start_POSTSUBSCRIPT italic_σ , italic_K , roman_ℓ , italic_n end_POSTSUBSCRIPT satisfy the following conditions:

  1. (1)

    HiKσHjKsubscript𝐻𝑖𝐾𝜎subscript𝐻𝑗𝐾\displaystyle H_{i}\cap K\neq\sigma H_{j}\cap Kitalic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_K ≠ italic_σ italic_H start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∩ italic_K, for all i𝑖\displaystyle iitalic_i and all ji𝑗𝑖\displaystyle j\neq iitalic_j ≠ italic_i.

  2. (2)

    HiKσHiKsubscript𝐻𝑖𝐾𝜎subscript𝐻𝑖𝐾\displaystyle H_{i}\cap K\neq\sigma H_{i}\cap Kitalic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_K ≠ italic_σ italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_K, for all i𝑖\displaystyle iitalic_i, if σ𝜎\displaystyle\sigmaitalic_σ does not act as a complex hom*othety on K𝐾\displaystyle Kitalic_K.

Proof of the Generically One-To-One Unfolding Lemma 2.11

Let f𝑓\displaystyle fitalic_f be a multi-germ of reflection mapping, given by a germ (𝒴,Wu)𝒴𝑊𝑢\displaystyle(\mathcal{Y},Wu)( caligraphic_Y , italic_W italic_u ). Take the decomposition into mono-germs

(𝒴,Wu)=(𝒴1,u1)(𝒴,u),𝒴𝑊𝑢square-unionsubscript𝒴1superscript𝑢1subscript𝒴superscript𝑢\displaystyle(\mathcal{Y},Wu)=(\mathcal{Y}_{1},u^{1})\sqcup\dots\sqcup(%\mathcal{Y}_{\ell},u^{\ell}),( caligraphic_Y , italic_W italic_u ) = ( caligraphic_Y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) ⊔ ⋯ ⊔ ( caligraphic_Y start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT , italic_u start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT ) ,

We want to find a representative 𝒴=𝒴1𝒴𝒴square-unionsubscript𝒴1subscript𝒴\displaystyle\mathcal{Y}=\mathcal{Y}_{1}\sqcup\dots\sqcup\mathcal{Y}_{\ell}caligraphic_Y = caligraphic_Y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊔ ⋯ ⊔ caligraphic_Y start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT having a trivial deformation

𝒴~=𝒴~1𝒴~𝒱×Δ,~𝒴square-unionsubscript~𝒴1subscript~𝒴𝒱Δ\displaystyle\widetilde{\mathcal{Y}}=\widetilde{\mathcal{Y}}_{1}\sqcup\dots%\sqcup\widetilde{\mathcal{Y}}_{\ell}\subseteq\mathcal{V}\times\Delta,over~ start_ARG caligraphic_Y end_ARG = over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊔ ⋯ ⊔ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ⊆ caligraphic_V × roman_Δ ,

such that dim(𝒴~σ𝒴~)<dim𝒴~dim~𝒴𝜎~𝒴dim~𝒴\displaystyle\operatorname{dim}(\widetilde{\mathcal{Y}}\cap\sigma\widetilde{%\mathcal{Y}})<\operatorname{dim}\widetilde{\mathcal{Y}}roman_dim ( over~ start_ARG caligraphic_Y end_ARG ∩ italic_σ over~ start_ARG caligraphic_Y end_ARG ) < roman_dim over~ start_ARG caligraphic_Y end_ARG, for all σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }. Observe that, if the representatives 𝒴~isubscript~𝒴𝑖\displaystyle\widetilde{\mathcal{Y}}_{i}over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are chosen adequately, the desired dimension drop is equivalent to the condition that, for all i,j𝑖𝑗\displaystyle i,jitalic_i , italic_j and all tΔ{0}𝑡Δ0\displaystyle t\in\Delta\setminus\{0\}italic_t ∈ roman_Δ ∖ { 0 }, we have that

𝒴~i,tσ𝒴~j,t.subscript~𝒴𝑖𝑡𝜎subscript~𝒴𝑗𝑡\displaystyle\widetilde{\mathcal{Y}}_{i,t}\neq\sigma\widetilde{\mathcal{Y}}_{j%,t}.over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ≠ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_j , italic_t end_POSTSUBSCRIPT .

To justify the existence of 𝒴~~𝒴\displaystyle\widetilde{\mathcal{Y}}over~ start_ARG caligraphic_Y end_ARG, we consider the consider the cases u=0𝑢0\displaystyle u=0italic_u = 0 and u0𝑢0\displaystyle u\neq 0italic_u ≠ 0 separately.

In the case of u0𝑢0\displaystyle u\neq 0italic_u ≠ 0, we have in our advantage the fact that no complex hom*othety fixes any of the points in Wu𝑊𝑢\displaystyle Wuitalic_W italic_u. In particular, if σW𝜎𝑊\displaystyle\sigma\in Witalic_σ ∈ italic_W is a complex hom*othety and the representatives 𝒴isubscript𝒴𝑖\displaystyle\mathcal{Y}_{i}caligraphic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are chosen small enough, then 𝒴iσ𝒴i=subscript𝒴𝑖𝜎subscript𝒴𝑖\displaystyle\mathcal{Y}_{i}\cap\sigma\mathcal{Y}_{i}=\emptysetcaligraphic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_σ caligraphic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∅. Then, any small enough deformation satisfies 𝒴~i,tσ𝒴~i,t=subscript~𝒴𝑖𝑡𝜎subscript~𝒴𝑖𝑡\displaystyle\widetilde{\mathcal{Y}}_{i,t}\cap\sigma\widetilde{\mathcal{Y}}_{i%,t}=\emptysetover~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ∩ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT = ∅, for all i𝑖\displaystyle i\leq\ellitalic_i ≤ roman_ℓ.

By Lemma A.3 and the Curve Selection Lemma, there exists a curve

γ:ΔGrass(n,𝒱)××Grass(n,𝒱),\displaystyle\gamma\colon\Delta\to\operatorname{Grass}(n,\mathcal{V})\times%\stackrel{{\scriptstyle\ell}}{{\dots}}\times\operatorname{Grass}(n,\mathcal{V}),italic_γ : roman_Δ → roman_Grass ( italic_n , caligraphic_V ) × start_RELOP SUPERSCRIPTOP start_ARG … end_ARG start_ARG roman_ℓ end_ARG end_RELOP × roman_Grass ( italic_n , caligraphic_V ) ,

such that, identifying Tui𝒱𝒱subscript𝑇subscript𝑢𝑖𝒱𝒱\displaystyle T_{u_{i}}\mathcal{V}\cong\mathcal{V}italic_T start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_V ≅ caligraphic_V as usual, we have that γ(0)=(Tu1𝒴,,Tu𝒴)𝛾0subscript𝑇subscript𝑢1𝒴subscript𝑇subscript𝑢𝒴\displaystyle\gamma(0)=(T_{u_{1}}\mathcal{Y},\dots,T_{u_{\ell}}\mathcal{Y})italic_γ ( 0 ) = ( italic_T start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_Y , … , italic_T start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_Y ) and

γ(t)σW{1}σ,𝒱,,n𝛾𝑡subscript𝜎𝑊1subscript𝜎𝒱𝑛\displaystyle\gamma(t)\in\bigcap_{\sigma\in W\setminus\{1\}}\mathscr{H}_{%\sigma,\mathcal{V},\ell,n}italic_γ ( italic_t ) ∈ ⋂ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT script_H start_POSTSUBSCRIPT italic_σ , caligraphic_V , roman_ℓ , italic_n end_POSTSUBSCRIPT

for all tΔ{0}𝑡Δ0\displaystyle t\in\Delta\setminus\{0\}italic_t ∈ roman_Δ ∖ { 0 }. Letting Hi,t=γi(t)subscript𝐻𝑖𝑡subscript𝛾𝑖𝑡\displaystyle H_{i,t}=\gamma_{i}(t)italic_H start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT = italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ), there exists an analytic family of linear automorfisms αi,t:𝒱𝒱:subscript𝛼𝑖𝑡𝒱𝒱\displaystyle\alpha_{i,t}\colon\mathcal{V}\to\mathcal{V}italic_α start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT : caligraphic_V → caligraphic_V, such that αi,t(Tui𝒴)=Hi,tsubscript𝛼𝑖𝑡subscript𝑇superscript𝑢𝑖𝒴subscript𝐻𝑖𝑡\displaystyle\alpha_{i,t}(T_{u^{i}}\mathcal{Y})=H_{i,t}italic_α start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT caligraphic_Y ) = italic_H start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT. Finally, the germs of biholomorphism

φi,t:(𝒱,ui)(𝒱,ui),:subscript𝜑𝑖𝑡𝒱superscript𝑢𝑖𝒱superscript𝑢𝑖\displaystyle\varphi_{i,t}\colon(\mathcal{V},u^{i})\to(\mathcal{V},u^{i}),italic_φ start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT : ( caligraphic_V , italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) → ( caligraphic_V , italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) ,

given by uu+αi,t(uui)maps-to𝑢𝑢subscript𝛼𝑖𝑡𝑢superscript𝑢𝑖\displaystyle u\mapsto u+\alpha_{i,t}(u-u^{i})italic_u ↦ italic_u + italic_α start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ( italic_u - italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ), define deformations 𝒴~i,t=φi,t(𝒴i)subscript~𝒴𝑖𝑡subscript𝜑𝑖𝑡subscript𝒴𝑖\displaystyle\widetilde{\mathcal{Y}}_{i,t}=\varphi_{i,t}(\mathcal{Y}_{i})over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT = italic_φ start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ( caligraphic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) of 𝒴isubscript𝒴𝑖\displaystyle\mathcal{Y}_{i}caligraphic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, such that ui𝒴~i,tsuperscript𝑢𝑖subscript~𝒴𝑖𝑡\displaystyle u^{i}\in\widetilde{\mathcal{Y}}_{i,t}italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ∈ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT, for all tΔ𝑡Δ\displaystyle t\in\Deltaitalic_t ∈ roman_Δ, and Tui𝒴~i,t=Hi,tsubscript𝑇superscript𝑢𝑖subscript~𝒴𝑖𝑡subscript𝐻𝑖𝑡\displaystyle T_{u^{i}}\widetilde{\mathcal{Y}}_{i,t}=H_{i,t}italic_T start_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT. We must check that, given σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 } and assuming that either ij𝑖𝑗\displaystyle i\neq jitalic_i ≠ italic_j or σ𝜎\displaystyle\sigmaitalic_σ is not an hom*othety, the deformations 𝒴~isubscript~𝒴𝑖\displaystyle\widetilde{\mathcal{Y}}_{i}over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT satisfy 𝒴~i,tσ𝒴~j,t,subscript~𝒴𝑖𝑡𝜎subscript~𝒴𝑗𝑡\displaystyle\widetilde{\mathcal{Y}}_{i,t}\neq\sigma\widetilde{\mathcal{Y}}_{j%,t},over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ≠ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_j , italic_t end_POSTSUBSCRIPT , for all tΔ{0}𝑡Δ0\displaystyle t\in\Delta\setminus\{0\}italic_t ∈ roman_Δ ∖ { 0 }. This is trivial if σujui𝜎superscript𝑢𝑗superscript𝑢𝑖\displaystyle\sigma u^{j}\neq u^{i}italic_σ italic_u start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ≠ italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT and, otherwise, it follows from the fact that γ(t)σ,𝒱,,n𝛾𝑡subscript𝜎𝒱𝑛\displaystyle\gamma(t)\in\mathscr{H}_{\sigma,\mathcal{V},\ell,n}italic_γ ( italic_t ) ∈ script_H start_POSTSUBSCRIPT italic_σ , caligraphic_V , roman_ℓ , italic_n end_POSTSUBSCRIPT, because then

Tui𝒴~i=Hi,tσHj,t=σTuj𝒴~j,t=Tσujσ𝒴~j,t=Tuiσ𝒴~j,t.subscript𝑇superscript𝑢𝑖subscript~𝒴𝑖subscript𝐻𝑖𝑡𝜎subscript𝐻𝑗𝑡𝜎subscript𝑇superscript𝑢𝑗subscript~𝒴𝑗𝑡subscript𝑇𝜎superscript𝑢𝑗𝜎subscript~𝒴𝑗𝑡subscript𝑇superscript𝑢𝑖𝜎subscript~𝒴𝑗𝑡\displaystyle T_{u^{i}}\widetilde{\mathcal{Y}}_{i}=H_{i,t}\neq\sigma H_{j,t}=%\sigma T_{u^{j}}\widetilde{\mathcal{Y}}_{j,t}=T_{\sigma u^{j}}\sigma\widetilde%{\mathcal{Y}}_{j,t}=T_{u^{i}}\sigma\tilde{\mathcal{Y}}_{j,t}.italic_T start_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT italic_i , italic_t end_POSTSUBSCRIPT ≠ italic_σ italic_H start_POSTSUBSCRIPT italic_j , italic_t end_POSTSUBSCRIPT = italic_σ italic_T start_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_POSTSUBSCRIPT over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_j , italic_t end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_σ italic_u start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_j , italic_t end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_j , italic_t end_POSTSUBSCRIPT .

Now consider the case where u=0𝑢0\displaystyle u=0italic_u = 0. Here there is the advantage that the orbit of u𝑢\displaystyle uitalic_u is just {0}0\displaystyle\{0\}{ 0 }. By the same reasoning as in the case of u0𝑢0\displaystyle u\neq 0italic_u ≠ 0, there exists a family of linear automorphisms φt:𝒱𝒱:subscript𝜑𝑡𝒱𝒱\displaystyle\varphi_{t}\colon\mathcal{V}\to\mathcal{V}italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT : caligraphic_V → caligraphic_V, such that, φ0(𝒴)=𝒴subscript𝜑0𝒴𝒴\displaystyle\varphi_{0}(\mathcal{Y})=\mathcal{Y}italic_φ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( caligraphic_Y ) = caligraphic_Y and, for all t0𝑡0\displaystyle t\neq 0italic_t ≠ 0 and every σW𝜎𝑊\displaystyle\sigma\in Witalic_σ ∈ italic_W which is not a complex hom*othety,

T0(φt(𝒴))T0(φt(σ𝒴)).subscript𝑇0subscript𝜑𝑡𝒴subscript𝑇0subscript𝜑𝑡𝜎𝒴\displaystyle T_{0}(\varphi_{t}(\mathcal{Y}))\neq T_{0}(\varphi_{t}(\sigma%\mathcal{Y})).italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( caligraphic_Y ) ) ≠ italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_σ caligraphic_Y ) ) .

Now let σ1,,σrsubscript𝜎1subscript𝜎𝑟\displaystyle\sigma_{1},\dots,\sigma_{r}italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_σ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT be the hom*otheties in W{1}𝑊1\displaystyle W\setminus\{1\}italic_W ∖ { 1 }, such that σi𝒴=𝒴subscript𝜎𝑖𝒴𝒴\displaystyle\sigma_{i}\mathcal{Y}=\mathcal{Y}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT caligraphic_Y = caligraphic_Y (we do not need to care about complex hom*otheties σ𝜎\displaystyle\sigmaitalic_σ with σ𝒴𝒴𝜎𝒴𝒴\displaystyle\sigma\mathcal{Y}\neq\mathcal{Y}italic_σ caligraphic_Y ≠ caligraphic_Y, since they will satisfy 𝒴~tσ𝒴~tsubscript~𝒴𝑡𝜎subscript~𝒴𝑡\displaystyle\widetilde{\mathcal{Y}}_{t}\neq\sigma\widetilde{\mathcal{Y}}_{t}over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ≠ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, for any small enough deformation of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y). We may assume dim𝒴>0dim𝒴0\displaystyle\operatorname{dim}\mathcal{Y}>0roman_dim caligraphic_Y > 0, as our problem is trivial otherwise. Then, 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y cannot be contained in any FixσiFixsubscript𝜎𝑖\displaystyle\operatorname{Fix}\sigma_{i}roman_Fix italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, because a complex hom*othety which is not the identity fixes the origin only. Consequently, we may find a point u𝒴superscript𝑢𝒴\displaystyle u^{\prime}\in\mathcal{Y}italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_Y, such that uσi(u),superscript𝑢subscript𝜎𝑖superscript𝑢\displaystyle u^{\prime}\neq\sigma_{i}(u^{\prime}),italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≠ italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,for i=1,,r𝑖1𝑟\displaystyle i=1,\dots,ritalic_i = 1 , … , italic_r. Since σi(u)0subscript𝜎𝑖superscript𝑢0\displaystyle\sigma_{i}(u^{\prime})\neq 0italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≠ 0, we may take a polynomial function p𝑝\displaystyle pitalic_p on 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V, such thatp(u)=0𝑝superscript𝑢0\displaystyle p(u^{\prime})=0italic_p ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 0, p(σu)0𝑝𝜎superscript𝑢0\displaystyle p(\sigma u^{\prime})\neq 0italic_p ( italic_σ italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≠ 0, and p𝑝\displaystyle pitalic_p vanishes at the origin with order of vanishing at least two. Now take the equations L=(L1,,Lpn)=0𝐿subscript𝐿1subscript𝐿𝑝𝑛0\displaystyle L=(L_{1},\dots,L_{p-n})=0italic_L = ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT ) = 0 of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y and define

𝒴~t=φt(V(L1+tp,L2,,Lpn)).subscript~𝒴𝑡subscript𝜑𝑡𝑉subscript𝐿1𝑡𝑝subscript𝐿2subscript𝐿𝑝𝑛\displaystyle\widetilde{\mathcal{Y}}_{t}=\varphi_{t}\big{(}V(L_{1}+t\,p,L_{2},%\dots,L_{p-n})\big{)}.over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_V ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_t italic_p , italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT ) ) .

For t0𝑡0\displaystyle t\neq 0italic_t ≠ 0, the fact that p𝑝\displaystyle pitalic_p vanishes at 00\displaystyle 0 with order at least two implies that 0𝒴~t0subscript~𝒴𝑡\displaystyle 0\in\widetilde{\mathcal{Y}}_{t}0 ∈ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and that, for every σW𝜎𝑊\displaystyle\sigma\in Witalic_σ ∈ italic_W which is not a complex hom*othety,

T0𝒴~t=T0(φt(𝒴))T0(φt(σ𝒴))=T0(σ𝒴~t),subscript𝑇0subscript~𝒴𝑡subscript𝑇0subscript𝜑𝑡𝒴subscript𝑇0subscript𝜑𝑡𝜎𝒴subscript𝑇0𝜎subscript~𝒴𝑡\displaystyle T_{0}\widetilde{\mathcal{Y}}_{t}=T_{0}(\varphi_{t}(\mathcal{Y}))%\neq T_{0}(\varphi_{t}(\sigma\mathcal{Y}))=T_{0}(\sigma\widetilde{\mathcal{Y}}%_{t}),italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( caligraphic_Y ) ) ≠ italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_σ caligraphic_Y ) ) = italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ,

which clearly implies 𝒴~tσ𝒴~tsubscript~𝒴𝑡𝜎subscript~𝒴𝑡\displaystyle\widetilde{\mathcal{Y}}_{t}\neq\sigma\widetilde{\mathcal{Y}}_{t}over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ≠ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, as desired.

Finally, for t0𝑡0\displaystyle t\neq 0italic_t ≠ 0 and any of the complex hom*otheties σiW{id}subscript𝜎𝑖𝑊id\displaystyle\sigma_{i}\in W\setminus\{\operatorname{id}\}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_W ∖ { roman_id } above, it suffices to show that φt(u)𝒴~tσ𝒴~tsubscript𝜑𝑡superscript𝑢subscript~𝒴𝑡𝜎subscript~𝒴𝑡\displaystyle\varphi_{t}(u^{\prime})\in\widetilde{\mathcal{Y}}_{t}\setminus%\sigma\widetilde{\mathcal{Y}}_{t}italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∖ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT. On one hand, by construction, the conditions φt(u)𝒴~tsubscript𝜑𝑡superscript𝑢subscript~𝒴𝑡\displaystyle\varphi_{t}(u^{\prime})\in\widetilde{\mathcal{Y}}_{t}italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and uV(L1+tp,L2,,Lpn)superscript𝑢𝑉subscript𝐿1𝑡𝑝subscript𝐿2subscript𝐿𝑝𝑛\displaystyle u^{\prime}\in V(L_{1}+t\,p,L_{2},\dots,L_{p-n})italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_V ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_t italic_p , italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT ) are equivalent, and the second holds because usuperscript𝑢\displaystyle u^{\prime}italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is in 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y and p𝑝\displaystyle pitalic_p vanishes at usuperscript𝑢\displaystyle u^{\prime}italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. On the other hand, φt(u)σ𝒴~tsubscript𝜑𝑡superscript𝑢𝜎subscript~𝒴𝑡\displaystyle\varphi_{t}(u^{\prime})\in\sigma\widetilde{\mathcal{Y}}_{t}italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is equivalent to uφt1σφt(V(L1+tp,L2,,Lpn))superscript𝑢superscriptsubscript𝜑𝑡1𝜎subscript𝜑𝑡𝑉subscript𝐿1𝑡𝑝subscript𝐿2subscript𝐿𝑝𝑛\displaystyle u^{\prime}\in\varphi_{t}^{-1}\sigma\varphi_{t}\big{(}V(L_{1}+t\,%p,L_{2},\dots,L_{p-n})\big{)}italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_σ italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_V ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_t italic_p , italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT ) ).Now observe that complex hom*otheties commute with linear transformations, and thus φt1σφ=σsuperscriptsubscript𝜑𝑡1𝜎𝜑𝜎\displaystyle\varphi_{t}^{-1}\sigma\varphi=\sigmaitalic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_σ italic_φ = italic_σ. Since σiuσi𝒴=𝒴subscript𝜎𝑖superscript𝑢subscript𝜎𝑖𝒴𝒴\displaystyle\sigma_{i}u^{\prime}\in\sigma_{i}\mathcal{Y}=\mathcal{Y}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT caligraphic_Y = caligraphic_Y, we conclude L(σiu)=0𝐿subscript𝜎𝑖superscript𝑢0\displaystyle L(\sigma_{i}u^{\prime})=0italic_L ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 0, and since p(σiu)0𝑝subscript𝜎𝑖superscript𝑢0\displaystyle p(\sigma_{i}u^{\prime})\neq 0italic_p ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≠ 0, it follows that φt(u)σ𝒴~tsubscript𝜑𝑡superscript𝑢𝜎subscript~𝒴𝑡\displaystyle\varphi_{t}(u^{\prime})\notin\sigma\widetilde{\mathcal{Y}}_{t}italic_φ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∉ italic_σ over~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, as desired.

Proof of the Unfolding With Good Double Points Lemma 5.1

Recall that our goal is to show that any multi-germ of reflection mapping admits a W𝑊\displaystyle Witalic_W-unfolding F𝐹\displaystyle Fitalic_F, such that, for all σ,τW{1}𝜎𝜏𝑊1\displaystyle\sigma,\tau\in W\setminus\{1\}italic_σ , italic_τ ∈ italic_W ∖ { 1 }

dim(Dσ(F)Fixτ)<dimDσ(F).dimsubscript𝐷𝜎𝐹Fix𝜏dimsubscript𝐷𝜎𝐹\displaystyle\operatorname{dim}(D_{\sigma}(F)\cap\operatorname{Fix}\tau)<%\operatorname{dim}D_{\sigma}(F).roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_F ) ∩ roman_Fix italic_τ ) < roman_dim italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_F ) .
Lemma A.4.

Any germ of codimension one submanifold (𝒴,Wy)𝒱𝒴𝑊𝑦𝒱\displaystyle(\mathcal{Y},Wy)\subseteq\mathcal{V}( caligraphic_Y , italic_W italic_y ) ⊆ caligraphic_V admits a W𝑊\displaystyle Witalic_W-unfolding, given by 𝒴~𝒱×Δ~𝒴𝒱Δ\displaystyle\widetilde{\mathcal{Y}}\subseteq\mathcal{V}\times\Deltaover~ start_ARG caligraphic_Y end_ARG ⊆ caligraphic_V × roman_Δ, such that, for every facet C𝒞𝐶𝒞\displaystyle C\in\mathscr{C}italic_C ∈ script_C and for all tΔ{0}𝑡Δ0\displaystyle t\in\Delta\setminus\{0\}italic_t ∈ roman_Δ ∖ { 0 }, the intersection 𝒴~tCsubscript~𝒴𝑡𝐶\displaystyle\widetilde{\mathcal{Y}}_{t}\cap Cover~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ italic_C is smooth of dimension dimC1dim𝐶1\displaystyle\operatorname{dim}C-1roman_dim italic_C - 1, and such that 𝒴~~𝒴\displaystyle\widetilde{\mathcal{Y}}over~ start_ARG caligraphic_Y end_ARG is transverse to the reflecting hyperplanes in 𝒱×𝒱\displaystyle\mathcal{V}\times\mathbb{C}caligraphic_V × blackboard_C.

Proof.

Taking the equation L𝐿\displaystyle Litalic_L of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y and letting 𝒴~={L(u)=t}𝒱×~𝒴𝐿𝑢𝑡𝒱\displaystyle\widetilde{\mathcal{Y}}=\{L(u)=t\}\subseteq\mathcal{V}\times%\mathbb{C}over~ start_ARG caligraphic_Y end_ARG = { italic_L ( italic_u ) = italic_t } ⊆ caligraphic_V × blackboard_C, the projection 𝒴~C¯~𝒴𝐶¯\displaystyle\widetilde{\mathcal{Y}}\cap C\to\overline{\mathbb{C}}over~ start_ARG caligraphic_Y end_ARG ∩ italic_C → over¯ start_ARG blackboard_C end_ARG on the t𝑡\displaystyle titalic_t parameter is the Milnor fibration of V(L)𝑉𝐿\displaystyle V(L)italic_V ( italic_L ) inside C¯¯𝐶\displaystyle\overline{C}over¯ start_ARG italic_C end_ARG. This implies the claim that 𝒴~tCsubscript~𝒴𝑡𝐶\displaystyle\widetilde{\mathcal{Y}}_{t}\cap Cover~ start_ARG caligraphic_Y end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ italic_C is smooth of dimension dimC1dim𝐶1\displaystyle\operatorname{dim}C-1roman_dim italic_C - 1. The transversality of 𝒴~~𝒴\displaystyle\widetilde{\mathcal{Y}}over~ start_ARG caligraphic_Y end_ARG to the reflecting hyperplanes, which have the form H×𝒱×𝐻𝒱\displaystyle H\times\mathbb{C}\subseteq\mathcal{V}\times\mathbb{C}italic_H × blackboard_C ⊆ caligraphic_V × blackboard_C, is obvious from its equation.∎

Since a W𝑊\displaystyle Witalic_W-unfolding of a W𝑊\displaystyle Witalic_W-unfolding of f𝑓\displaystyle fitalic_f is still a W𝑊\displaystyle Witalic_W-unfolding of f𝑓\displaystyle fitalic_f and we do not care about the number of parameters needed for the W𝑊\displaystyle Witalic_W-unfolding in Lemma 5.1, the original f𝑓\displaystyle fitalic_f may be replaced by the W𝑊\displaystyle Witalic_W-unfolding given by the Generically One-To-One Unfolding Lemma. This may in turn be replaced by one satisfying the conditions of Lemma A.4 as well. In other words, in order to prove Lemma 5.1, we may assume our original multi-gem f:(𝒴n,Wy)n+1:𝑓superscript𝒴𝑛𝑊𝑦superscript𝑛1\displaystyle f\colon(\mathcal{Y}^{n},Wy)\to\mathcal{\mathbb{C}}^{n+1}italic_f : ( caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_W italic_y ) → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT to satisfy the following conditions:

  1. (1)

    𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y intersects transversely all reflecting hyperplanes.

  2. (2)

    𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y intersects properly all facets of 𝒞𝒞\displaystyle\mathscr{C}script_C of dimension n1𝑛1\displaystyle n-1italic_n - 1.

  3. (3)

    dim(𝒴σ𝒴)=n1dim𝒴𝜎𝒴𝑛1\displaystyle\operatorname{dim}(\mathcal{Y}\cap\sigma\mathcal{Y})=n-1roman_dim ( caligraphic_Y ∩ italic_σ caligraphic_Y ) = italic_n - 1, for all σW{1}𝜎𝑊1\displaystyle\sigma\in W\setminus\{1\}italic_σ ∈ italic_W ∖ { 1 }.

Now observe that, to show the existence of an unfolding satisfying dim(Dσ(F)Fixτ)<dimDσ(F)dimsubscript𝐷𝜎𝐹Fix𝜏dimsubscript𝐷𝜎𝐹\displaystyle\operatorname{dim}(D_{\sigma}(F)\cap\operatorname{Fix}\tau)<%\operatorname{dim}D_{\sigma}(F)roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_F ) ∩ roman_Fix italic_τ ) < roman_dim italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_F ), we do not need to deal with all pairs σ𝜎\displaystyle\sigmaitalic_σ and τ𝜏\displaystyle\tauitalic_τ at once. We may fix σ𝜎\displaystyle\sigmaitalic_σ and τ𝜏\displaystyle\tauitalic_τ, find an a good unfolding for them and move on to the next pair of elements. We may also assume 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y to have at most two branches, one containing some point u𝑢\displaystyle uitalic_u and, when σuu𝜎𝑢𝑢\displaystyle\sigma u\neq uitalic_σ italic_u ≠ italic_u, another one containing σu𝜎𝑢\displaystyle\sigma uitalic_σ italic_u. If more branches were present, we would solve the problem taking consecutive unfoldings, one pair of branches at a time. Additionally, condition (2) allows us to assume τ𝜏\displaystyle\tauitalic_τ to be a reflection, since otherwise the dimension of 𝒴Fixτ𝒴Fix𝜏\displaystyle\mathcal{Y}\cap\operatorname{Fix}\taucaligraphic_Y ∩ roman_Fix italic_τ is already smaller than that of Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ). By condition (1), the intersection 𝒴Fixτ𝒴Fix𝜏\displaystyle\mathcal{Y}\cap\operatorname{Fix}\taucaligraphic_Y ∩ roman_Fix italic_τ is smooth of dimension n1𝑛1\displaystyle n-1italic_n - 1. We are now reduced to showing the following result:

Lemma A.5.

Let σW{id}𝜎𝑊id\displaystyle\sigma\in W\setminus\{\operatorname{id}\}italic_σ ∈ italic_W ∖ { roman_id } and let τ𝜏\displaystyle\tauitalic_τ be a reflection in W𝑊\displaystyle Witalic_W. Let 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y be a germ of n𝑛\displaystyle nitalic_n-dimensional complex manifold satisfying the conditions (1), (2) and (3) above, and of one of the following forms:

  • 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is a bigerm (𝒴1,u)(𝒴2,σu)square-unionsubscript𝒴1𝑢subscript𝒴2𝜎𝑢\displaystyle(\mathcal{Y}_{1},u)\sqcup(\mathcal{Y}_{2},\sigma u)( caligraphic_Y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u ) ⊔ ( caligraphic_Y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_σ italic_u ) with σuu𝜎𝑢𝑢\displaystyle\sigma u\neq uitalic_σ italic_u ≠ italic_u.

  • 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is a monogerm (𝒴,u)𝒴𝑢\displaystyle(\mathcal{Y},u)( caligraphic_Y , italic_u ) with uFixσ𝑢Fix𝜎\displaystyle u\in\operatorname{Fix}\sigmaitalic_u ∈ roman_Fix italic_σ.

Then, there exists a deformation of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y whose fibers, for t0𝑡0\displaystyle t\neq 0italic_t ≠ 0, satisfy dim(Dσ(ft)Fixτ)<n1dimsubscript𝐷𝜎subscript𝑓𝑡Fix𝜏𝑛1\displaystyle\operatorname{dim}(D_{\sigma}(f_{t})\cap\operatorname{Fix}\tau)<n-1roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ∩ roman_Fix italic_τ ) < italic_n - 1.

Proof.

In the bigerm case, we may proceed as in the proof of the Generically One-To-One Unfolding Lemma 2.11, but restricting everything to FixτFix𝜏\displaystyle\operatorname{Fix}\tauroman_Fix italic_τ. To be precise, we start by observing that, by condition (1) and the fact that W𝑊\displaystyle Witalic_W acts on the set of hyperplanes, the sets 𝒴1Fixτsubscript𝒴1Fix𝜏\displaystyle\mathcal{Y}_{1}\cap\operatorname{Fix}\taucaligraphic_Y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ roman_Fix italic_τ and σ1𝒴2Fixτsuperscript𝜎1subscript𝒴2Fix𝜏\displaystyle\sigma^{-1}\mathcal{Y}_{2}\cap\operatorname{Fix}\tauitalic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ roman_Fix italic_τ are complex manifolds of dimension n1𝑛1\displaystyle n-1italic_n - 1. Now using Lemma A.3 with K=Fixτ𝐾Fix𝜏\displaystyle K=\operatorname{Fix}\tauitalic_K = roman_Fix italic_τ and the Curve Selection Lemma, we produce a deformation of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y whose fibers 𝒴1,tsubscript𝒴1𝑡\displaystyle\mathcal{Y}_{1,t}caligraphic_Y start_POSTSUBSCRIPT 1 , italic_t end_POSTSUBSCRIPT and 𝒴2,tsubscript𝒴2𝑡\displaystyle\mathcal{Y}_{2,t}caligraphic_Y start_POSTSUBSCRIPT 2 , italic_t end_POSTSUBSCRIPT contain u𝑢\displaystyle uitalic_u and σ1usuperscript𝜎1𝑢\displaystyle\sigma^{-1}uitalic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_u, respectively, and satisfy

Tu(𝒴1,tFixτ)Tσ1u(σ1𝒴2,tFixτ).subscript𝑇𝑢subscript𝒴1𝑡Fix𝜏subscript𝑇superscript𝜎1𝑢superscript𝜎1subscript𝒴2𝑡Fix𝜏\displaystyle T_{u}(\mathcal{Y}_{1,t}\cap\operatorname{Fix}\tau)\neq T_{\sigma%^{-1}u}(\sigma^{-1}\mathcal{Y}_{2,t}\cap\operatorname{Fix}\tau).italic_T start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( caligraphic_Y start_POSTSUBSCRIPT 1 , italic_t end_POSTSUBSCRIPT ∩ roman_Fix italic_τ ) ≠ italic_T start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_u end_POSTSUBSCRIPT ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT 2 , italic_t end_POSTSUBSCRIPT ∩ roman_Fix italic_τ ) .

This implies dim(𝒴1,tσ1𝒴2,tFixτ)<n1dimsubscript𝒴1𝑡superscript𝜎1subscript𝒴2𝑡Fix𝜏𝑛1\displaystyle\operatorname{dim}(\mathcal{Y}_{1,t}\cap\sigma^{-1}\mathcal{Y}_{2%,t}\cap\operatorname{Fix}\tau)<n-1roman_dim ( caligraphic_Y start_POSTSUBSCRIPT 1 , italic_t end_POSTSUBSCRIPT ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT 2 , italic_t end_POSTSUBSCRIPT ∩ roman_Fix italic_τ ) < italic_n - 1, and the claim follows from the inclusion Dσ(ft)𝒴1,tσ1𝒴2,tsubscript𝐷𝜎subscript𝑓𝑡subscript𝒴1𝑡superscript𝜎1subscript𝒴2𝑡\displaystyle D_{\sigma}(f_{t})\subseteq\mathcal{Y}_{1,t}\cap\mathcal{\sigma}^%{-1}\mathcal{Y}_{2,t}italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ⊆ caligraphic_Y start_POSTSUBSCRIPT 1 , italic_t end_POSTSUBSCRIPT ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT 2 , italic_t end_POSTSUBSCRIPT.

Now we deal with the monogerm case. Let Z𝑍\displaystyle Zitalic_Z be the union of all (n1)𝑛1\displaystyle(n-1)( italic_n - 1 )-dimensional components of Dσ(f)Fixτsubscript𝐷𝜎𝑓Fix𝜏\displaystyle D_{\sigma}(f)\cap\operatorname{Fix}\tauitalic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∩ roman_Fix italic_τ. Transversality forces 𝒴Fixτ𝒴Fix𝜏\displaystyle\mathcal{Y}\cap\operatorname{Fix}\taucaligraphic_Y ∩ roman_Fix italic_τ to be a complex manifold of dimension n1𝑛1\displaystyle n-1italic_n - 1. Since the irreducible components of Z𝑍\displaystyle Zitalic_Z have dimension n1𝑛1\displaystyle n-1italic_n - 1 and ZFixτ𝑍Fix𝜏\displaystyle Z\subseteq\mathcal{\operatorname{Fix}}\tauitalic_Z ⊆ roman_Fix italic_τ, we conclude that Z𝑍\displaystyle Zitalic_Z is either empty or equal to 𝒴Fixτ𝒴Fix𝜏\displaystyle\mathcal{Y}\cap\operatorname{Fix}\taucaligraphic_Y ∩ roman_Fix italic_τ. We may assume Z𝑍\displaystyle Zitalic_Z to be non-empty, because otherwise a trivial deformation 𝒴t=𝒴subscript𝒴𝑡𝒴\displaystyle\mathcal{Y}_{t}=\mathcal{Y}caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = caligraphic_Y already satisfies our claim. We distinguish two cases:

If ZFixσnot-subset-of-or-equals𝑍Fix𝜎\displaystyle Z\not\subseteq\operatorname{Fix}\sigmaitalic_Z ⊈ roman_Fix italic_σ, from the inclusion ZDσ(f)Fixτ𝒴σ1𝒴Fixτ𝑍subscript𝐷𝜎𝑓Fix𝜏𝒴superscript𝜎1𝒴Fix𝜏\displaystyle Z\subseteq D_{\sigma}(f)\cap\operatorname{Fix}\tau\subseteq%\mathcal{Y}\cap\sigma^{-1}\mathcal{Y}\cap\operatorname{Fix}\tauitalic_Z ⊆ italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∩ roman_Fix italic_τ ⊆ caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y ∩ roman_Fix italic_τ we obtain

𝒴σ1𝒴FixτFixσ.not-subset-of-or-equals𝒴superscript𝜎1𝒴Fix𝜏Fix𝜎\displaystyle\mathcal{Y}\cap\sigma^{-1}\mathcal{Y}\cap\operatorname{Fix}\tau%\not\subseteq\operatorname{Fix}\sigma.caligraphic_Y ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y ∩ roman_Fix italic_τ ⊈ roman_Fix italic_σ .

This means that, for any representative of 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y (also denoted by 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y), there exists u𝒴Fixτsuperscript𝑢𝒴Fix𝜏\displaystyle u^{\prime}\in\mathcal{Y}\cap\operatorname{Fix}\tauitalic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_Y ∩ roman_Fix italic_τ, with σuu𝜎superscript𝑢superscript𝑢\displaystyle\sigma u^{\prime}\neq u^{\prime}italic_σ italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≠ italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, such that σu𝒴𝜎superscript𝑢𝒴\displaystyle\sigma u^{\prime}\in\mathcal{Y}italic_σ italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_Y. Now take an equation L=0𝐿0\displaystyle L=0italic_L = 0 for 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y, and a polynomial p𝑝\displaystyle pitalic_p, such that p(u)=0𝑝superscript𝑢0\displaystyle p(u^{\prime})=0italic_p ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 0 and p(σu)0𝑝𝜎superscript𝑢0\displaystyle p(\sigma u^{\prime})\neq 0italic_p ( italic_σ italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≠ 0, and define

𝒴t=V(L+tp).subscript𝒴𝑡𝑉𝐿𝑡𝑝\displaystyle\mathcal{Y}_{t}=V(L+tp).caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_V ( italic_L + italic_t italic_p ) .

For all t0𝑡0\displaystyle t\neq 0italic_t ≠ 0, just as in the proof of the generically one-to-one unfolding Lemma 2.11, the fiber 𝒴tsubscript𝒴𝑡\displaystyle\mathcal{Y}_{t}caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT satisfies u𝒴tFixτsuperscript𝑢subscript𝒴𝑡Fix𝜏\displaystyle u^{\prime}\in\mathcal{Y}_{t}\cap\operatorname{Fix}\tauitalic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ roman_Fix italic_τ and uσ1𝒴tsuperscript𝑢superscript𝜎1subscript𝒴𝑡\displaystyle u^{\prime}\notin\sigma^{-1}\mathcal{Y}_{t}italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∉ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, in particular, uσ1𝒴tFixτsuperscript𝑢superscript𝜎1subscript𝒴𝑡Fix𝜏\displaystyle u^{\prime}\notin\sigma^{-1}\mathcal{Y}_{t}\cap\operatorname{Fix}\tauitalic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∉ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ roman_Fix italic_τ. This implies dim(𝒴tσ1𝒴tFixτ)<n1dimsubscript𝒴𝑡superscript𝜎1subscript𝒴𝑡Fix𝜏𝑛1\displaystyle\operatorname{dim}(\mathcal{Y}_{t}\cap\sigma^{-1}\mathcal{Y}_{t}%\cap\operatorname{Fix}\tau)<n-1roman_dim ( caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ roman_Fix italic_τ ) < italic_n - 1, hence dim(Dσ(ft)Fixτ)<n1dimsubscript𝐷𝜎subscript𝑓𝑡Fix𝜏𝑛1\displaystyle\operatorname{dim}(D_{\sigma}(f_{t})\cap\operatorname{Fix}\tau)<n-1roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ∩ roman_Fix italic_τ ) < italic_n - 1, as desired.

Finally, consider the case where ZFixσ𝑍Fix𝜎\displaystyle\emptyset\neq Z\subseteq\operatorname{Fix}\sigma∅ ≠ italic_Z ⊆ roman_Fix italic_σ. This hypothesis requires 𝒴FixσFixτ𝒴Fix𝜎Fix𝜏\displaystyle\mathcal{Y}\cap\operatorname{Fix}\sigma\cap\operatorname{Fix}\taucaligraphic_Y ∩ roman_Fix italic_σ ∩ roman_Fix italic_τ to have dimension n1𝑛1\displaystyle n-1italic_n - 1. Since FixσFixτFix𝜎Fix𝜏\displaystyle\operatorname{Fix}\sigma\cap\operatorname{Fix}\tauroman_Fix italic_σ ∩ roman_Fix italic_τ is the closure of a facet of the complex of W𝑊\displaystyle Witalic_W and 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y intersects properly the facets of dimension n1𝑛1\displaystyle n-1italic_n - 1, it follows that FixσFixτFix𝜎Fix𝜏\displaystyle\operatorname{Fix}\sigma\cap\operatorname{Fix}\tauroman_Fix italic_σ ∩ roman_Fix italic_τ must be a reflecting hyperplane. Then, σ𝜎\displaystyle\sigmaitalic_σ and τ𝜏\displaystyle\tauitalic_τ are reflections with respect to this hyperplane and, since Dσ(f)Fixτsubscript𝐷𝜎𝑓Fix𝜏\displaystyle D_{\sigma}(f)\cap\operatorname{Fix}\tauitalic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ∩ roman_Fix italic_τ depends only on 𝒴,σ𝒴𝜎\displaystyle\mathcal{Y},\sigmacaligraphic_Y , italic_σ and τ𝜏\displaystyle\tauitalic_τ, we may assume the reflection group to be W=/d𝑊𝑑\displaystyle W=\mathbb{Z}/ditalic_W = blackboard_Z / italic_d.

Then, the hypothesis Z𝑍\displaystyle Z\neq\emptysetitalic_Z ≠ ∅ implies Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)\neq\emptysetitalic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) ≠ ∅, which forces the germ f𝑓\displaystyle fitalic_f to be non-immersive. Since kerdωu=Fixσkerneldsubscript𝜔𝑢Fixsuperscript𝜎bottom\displaystyle\ker\operatorname{d}\!\omega_{u}=\operatorname{Fix}\sigma^{\bot}roman_ker roman_d italic_ω start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = roman_Fix italic_σ start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT, this implies that Ty𝒴subscript𝑇𝑦𝒴\displaystyle T_{y}\mathcal{Y}italic_T start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT caligraphic_Y contains FixσFixsuperscript𝜎bottom\displaystyle\operatorname{Fix}\sigma^{\bot}roman_Fix italic_σ start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT. In particular, we may choose coordinates on 𝒱𝒱\displaystyle\mathcal{V}caligraphic_V and 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y, so that the expression of f𝑓\displaystyle fitalic_f is

f(x1,,xn)=(x1,,xnd,H(x)),𝑓subscript𝑥1subscript𝑥𝑛subscript𝑥1superscriptsubscript𝑥𝑛𝑑𝐻𝑥\displaystyle f(x_{1},\dots,x_{n})=(x_{1},\dots,x_{n}^{d},H(x)),italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT , italic_H ( italic_x ) ) ,

for some analytic function H𝐻\displaystyle Hitalic_H of the form

H(x)=H0(x1,,xn1,xnd)+xnH1(x1,,xn1,xnd)++xnd1Hd(x1,,xn1,xnd),𝐻𝑥subscript𝐻0subscript𝑥1subscript𝑥𝑛1superscriptsubscript𝑥𝑛𝑑subscript𝑥𝑛subscript𝐻1subscript𝑥1subscript𝑥𝑛1superscriptsubscript𝑥𝑛𝑑superscriptsubscript𝑥𝑛𝑑1subscript𝐻𝑑subscript𝑥1subscript𝑥𝑛1superscriptsubscript𝑥𝑛𝑑\displaystyle H(x)=H_{0}(x_{1},\dots,x_{n-1},x_{n}^{d})+x_{n}H_{1}(x_{1},\dots%,x_{n-1},x_{n}^{d})+\dots+x_{n}^{d-1}H_{d}(x_{1},\dots,x_{n-1},x_{n}^{d}),italic_H ( italic_x ) = italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) + italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) + ⋯ + italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) ,

with H0(0)=0subscript𝐻000\displaystyle H_{0}(0)=0italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 0 ) = 0. Since 𝒴𝒴\displaystyle\mathcal{Y}caligraphic_Y is the graph H𝐻\displaystyle Hitalic_H, it is isomorphic to its projection on n×{0}nsuperscript𝑛0superscript𝑛\displaystyle\mathbb{C}^{n}\times\{0\}\cong\mathbb{C}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × { 0 } ≅ blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and, under this isomorphism, 𝒴Fixτ𝒴Fix𝜏\displaystyle\mathcal{Y}\cap\operatorname{Fix}\taucaligraphic_Y ∩ roman_Fix italic_τ becomes the subset {xn=0}subscript𝑥𝑛0\displaystyle\{x_{n}=0\}{ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 } and Dσ(f)subscript𝐷𝜎𝑓\displaystyle D_{\sigma}(f)italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) becomes the zero locus of

λσ=(1ξσ)H1(x1,,xn1,xnd)++(1ξ(d1)σ)xnd2Hd(x1,,xn1,xnd).subscript𝜆𝜎1superscript𝜉𝜎subscript𝐻1subscript𝑥1subscript𝑥𝑛1superscriptsubscript𝑥𝑛𝑑1superscript𝜉𝑑1𝜎superscriptsubscript𝑥𝑛𝑑2subscript𝐻𝑑subscript𝑥1subscript𝑥𝑛1superscriptsubscript𝑥𝑛𝑑\displaystyle\lambda_{\sigma}=(1-\xi^{\sigma})H_{1}(x_{1},\dots,x_{n-1},x_{n}^%{d})+\dots+(1-\xi^{(d-1)\sigma})x_{n}^{d-2}H_{d}(x_{1},\dots,x_{n-1},x_{n}^{d}).italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = ( 1 - italic_ξ start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ) italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) + ⋯ + ( 1 - italic_ξ start_POSTSUPERSCRIPT ( italic_d - 1 ) italic_σ end_POSTSUPERSCRIPT ) italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) .

Clearly, we may perturb H𝐻\displaystyle Hitalic_H in a way that the perturbed function λσ,tsubscript𝜆𝜎𝑡\displaystyle\lambda_{\sigma,t}italic_λ start_POSTSUBSCRIPT italic_σ , italic_t end_POSTSUBSCRIPT becomes not divisible by xnsubscript𝑥𝑛\displaystyle x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT for t0𝑡0\displaystyle t\neq 0italic_t ≠ 0, which forces dim(Dσ(ft)Fixτ)=n2<n1dimsubscript𝐷𝜎subscript𝑓𝑡Fix𝜏𝑛2𝑛1\displaystyle\operatorname{dim}(D_{\sigma}(f_{t})\cap\operatorname{Fix}\tau)=n%-2<n-1roman_dim ( italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ∩ roman_Fix italic_τ ) = italic_n - 2 < italic_n - 1, as desired.∎

References

  • [1]M.Barajas.Folding maps on a cross-cap.arXiv:2004.04781.
  • [2]J.P. Brasselet, T.Nguyen ThiBich, and M.A.S. Ruas.Local bi-lipschitz classification of semialgebraic surfaces.arXiv:1902.02235, 2019.
  • [3]J.W. Bruce.Projections and reflections of generic surfaces in 𝐑3superscript𝐑3\displaystyle{\bf R}^{3}bold_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.Math. Scand., 54(2):262–278, 1984.
  • [4]J.W. Bruce and T.C. Wilkinson.Folding maps and focal sets.In Singularity theory and its applications, Part I(Coventry, 1988/1989), volume 1462 of Lecture Notes in Math., pages63–72. Springer, Berlin, 1991.
  • [5]C.deConcini and E.Strickland.On the variety of complexes.Advances in Mathematics, 41:1981, 1981.
  • [6]Kevin Houston.On singularities of folding maps and augmentations.Math. Scand., 82(2):191–206, 1998.
  • [7]Shyuichi Izumiya, Masatomo Takahashi, and Farid Tari.Folding maps on spacelike and timelike surfaces and duality.Osaka J. Math., 47(3):839–862, 2010.
  • [8]W.L. Marar and J.J. Nuño Ballesteros.A note on finite determinacy for corank 2 map germs from surfaces to3-space.Math. Proc. Cambridge Philos. Soc., 145(1):153–163, 2008.
  • [9]W.L. Marar, J.J. Nuño Ballesteros, and G.Peñafort Sanchis.Double point curves for corank 2 map germs from 2superscript2\displaystyle\mathbb{C}^{2}blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT to3superscript3\displaystyle\mathbb{C}^{3}blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.Topology Appl., 159(2):526–536, 2012.
  • [10]D.Mond.Some remarks on the geometry and classification of germs of maps fromsurfaces to 3-space.Topology, 26(3):361–383, 1987.
  • [11]D.Mond and R.Pellikaan.Fitting ideals and multiple points of analytic mappings.Algebraic geometry and complex analysis (Pátzcuaro, 1987)Lecture Notes in Mathematics, 1414, pages 107–161, 1989.
  • [12]David Mond.On the classification of germs of maps from 𝐑2superscript𝐑2\displaystyle{\bf R}^{2}bold_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT to 𝐑3superscript𝐑3\displaystyle{\bf R}^{3}bold_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.Proc. London Math. Soc. (3), 50(2):333–369, 1985.
  • [13]J.J.Nuno Ballesteros and G.PeñafortSanchis.Iterated multiple points i: Equations and pathologies.Journal of the London Mathematical Society, 107(1):213–253,2023.
  • [14]J.J. Nuño-Ballesteros and G.PeñafortSanchis.Multiple point spaces of finite holomorphic maps.The Quarterly Journal of Mathematics, 68(2):369–390, June2017.
  • [15]Raúl OsetSinha and Kentaro Saji.On the geometry of folded cuspidal edges.Rev. Mat. Complut., 31(3):627–650, 2018.
  • [16]G.Peñafort Sanchis.The geometry of double fold maps.J. Singul., 10:250–263, 2014.
  • [17]G.PeñafortSanchis.Reflection maps.Mathematische Annalen, 378:559–598, 2020.Submitted. arXiv:1405.3403.
  • [18]G.PeñafortSanchis and F.Tari.On hidden symmetries of surfaces in the euclidean 3-space.Preprint, 2020.
  • [19]M.E. RodriguesHernandes and M.A.S. Ruas.Parametrized monomial surfaces in 4-space.Q. J. Math., 70(2):473–485, 2019.
  • [20]F.Ronga.Le calcul des classes duales aux singularités de Boardmand’ordre deux.Comment. Math. Helv., 47:15–35, 1972.
  • [21]M.A.S. Ruas and O.N. Silva.Whitney equisingularity of families of surfaces in 𝕔3superscript𝕔3\displaystyle\mathbb{c}^{3}blackboard_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.arXiv:1608.08290, 2017.
  • [22]O.N. Silva.On the topology of the transversal slice of a quasi-hom*ogeneous mapgerm.Math. Proc. Cambridge Philos. Soc., 176(2):339–359, 2024.
Double points and image of reflection maps (2024)

References

Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 5673

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.